Benedetto, P. D., Liakouli, V., Ruscitti, P., Berardicurti, O., Carubbi, F., Panzera, N., et al. (2018). Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibroblasts and proliferation: A new potential target for antifibrotic therapy. Arthritis Research and Therapy, 20, 223.
Article
Google Scholar
Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I. D., Lewis, M. R., et al. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 14, 72.
Article
Google Scholar
Chong, J., Wishart, D. S., & Xia, J. (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics, 68, e86.
Article
Google Scholar
De Kroon, A. I. P. M. (2007). Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1771, 343–352.
Article
Google Scholar
Ersoy, B. A., Tarun, A., D’Aquino, K., Hancer, N. J., Ukomadu, C., White, M. F., et al. (2013). Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling. Science Signaling, 6, ra64.
Article
Google Scholar
Gika, H. G., Theodoridis, G. A., Wingate, J. E., & Wilson, I. D. (2007). Within-day reproducibility of an HPLC–MS-based method for metabonomic analysis: Application to human urine. Journal of Proteome Research, 6(8), 3291–3303.
CAS
Article
Google Scholar
Hasanov, Z., Ruckdeschel, T., Konig, C., Mogler, C., Kapel, S. S., Korn, C., et al. (2017). Endosialin promotes atherosclerosis through phenotypic remodeling of vascular smooth muscle cells. Arteriosclerosis Thrombosis and Vascular Biology, 37(3), 495–505.
CAS
Article
Google Scholar
Hong, Y.-K., Lee, Y.-C., Cheng, T.-L., Lai, C.-H., Hsu, C.-K., Kuo, C.-H., et al. (2019). Tumor Endothelial Marker 1 (TEM1/Endosialin/CD248) enhances wound healing by interacting with platelet-derived growth factor receptors. Journal of Investigative Dermatology, 139(10), 2204–2214.
CAS
Article
Google Scholar
Kennedy, E. P., & Weiss, S. B. (1956). The function of cytidine coenzymes in the biosynthesis of phospholipids. Journal of Biological Chemistry, 222, 193–214.
CAS
Article
Google Scholar
Kritikou, E., van Puijvelde, G. H., van der Heijden, T., van Santbrink, P. J., Swart, M., Schaftenaar, F. H., et al. (2016). Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice. Scientific Reports, 6, 37585.
CAS
Article
Google Scholar
Lands, W. E. (1958). Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. Journal of Biological Chemistry, 231(2), 883–888.
CAS
Article
Google Scholar
MacFadyen, J. R., Haworth, O., Robertson, D., Hardie, D., Webster, M.-T., Morris, H. R., et al. (2005). Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Letters, 579, 2569–2575.
CAS
Article
Google Scholar
Maia, M., DeVriese, A., Janssens, T., Moons, M., Lories, R. J., Tavernier, J., et al. (2011). CD248 facilitates tumor growth via its cytoplasmic domain. BMC Cancer, 11, 162.
CAS
Article
Google Scholar
Nanda, A., Karim, B., Peng, Z., Liu, G., Qiu, W., Gan, C., et al. (2006). Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumours. Proceedings of the National Academy of Sciences of USA, 103(9), 3351–3356.
CAS
Article
Google Scholar
Naylor, A. J., Azzam, E., Smith, S., Croft, A. P., Poyser, C., Duffield, J. S., et al. (2012). The mesenchymal stem cell marker CD248 (endosialin) is a negative regulator of bone formation in mice. Arthritis and Rheumatology, 64(10), 3334–3343.
CAS
Article
Google Scholar
Naylor, A. J., McGettrick, H. M., Maynard, W. D., May, P., Barone, F., Croft, A. P., et al. (2014). A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS ONE, 9, e107146.
Article
Google Scholar
Ohradanova, A., Gradin, K., Barathova, M., Zatovicova, M., Holotnakova, T., Kopacek, J., et al. (2008). Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2. British Journal of Cancer, 99(8), 1348–1356.
CAS
Article
Google Scholar
Park, G.-B., Jeong, J.-Y., & Kim, D. (2020). Modified TLR-mediated downregulation of miR-125b-5p enhances CD248 (endosialin)-induced metastasis and drug resistance in colorectal cancer cells. Molecular Carcinogenesis, 59(2), 154–167.
CAS
Article
Google Scholar
Petrus, P., Fernandez, T. L., Kwon, M. M., Huang, J. L., Lei, V., Safikhan, N. S., et al. (2019). Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine, 44, 489–501.
Article
Google Scholar
Rupp, C., Dolznig, H., Puri, C., Sommergruber, W., Kerjaschki, D., Rettig, W. J., et al. (2006). Mouse endosialin, a C-type lectin-like cell surface receptor: Expression during embryonic development and induction in experimental cancer neoangiogenesis. Cancer Immunity, 6, 10.
PubMed
Google Scholar
Sakai, H., Kado, S., Taketomi, A., & Sakane, F. (2014). Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels. Journal of Biological Chemistry, 289(38), 26607–26617.
CAS
Article
Google Scholar
Sangster, T., Major, H., Plumb, R., Wilson, A. J., & Wilson, I. D. (2006). A pragmatic and readily implemented quality control strategy for HPLC–MS and GC–MS-based metabonomic analysis. The Analyst, 131(10), 1075–1078.
CAS
Article
Google Scholar
Shindou, H., & Shimizu, T. (2009). Acyl-CoA: Lysophospholipid acyltransferases. Journal of Biological Chemistry, 284(1), 1–5.
CAS
Article
Google Scholar
Simonavicius, N., Ashenden, M., van Weverwijk, A., Lax, S., Huso, D. L., Buckley, C. D., et al. (2012). Pericytes promote selective vessel regression to regulate vascular patterning. Blood, 120(7), 1516–1527.
CAS
Article
Google Scholar
Singh, A. B., & Liu, J. (2017). Identification of hepatic lysophosphatidylcholine acyltransferase 3 as a novel target gene regulated by peroxisome proliferator-activated receptor δ. Journal of Biological Chemistry, 292(3), 884–897.
CAS
Article
Google Scholar
Smith, S. W., Eardley, K. S., Croft, A. P., Nwosu, J., Howie, A. J., Cockwell, P., et al. (2011). CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney International, 80(2), 199–207.
CAS
Article
Google Scholar
Spicer, R. A., Salek, R., & Steinbeck, C. (2017). A decade after the Metabolomics Standards Initiative it’s time for a revision. Scientific Data, 4, 170138.
Article
Google Scholar
Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221.
CAS
Article
Google Scholar
Sundler, R., & Akesson, B. (1975). Biosynthesis of phosphatidylethanolamines and phosphatidylcholines from ethanolamine and choline in rat liver. Biochemistry Journal, 146(2), 309–315.
CAS
Article
Google Scholar
Tomkowicz, B., Rybinski, K., Sebeck, D., Sass, P., Nicolaides, N. C., Grasso, L., et al. (2010). Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling. Cancer Biological Therapy, 9(11), 908–915.
CAS
Article
Google Scholar
Vance, D. E. (2014). Phospholipid methylation in mammals: From biochemistry to physiological function. Biochimica et Biophysica Acta: Biomembranes, 1838(6), 1477–1487.
CAS
Article
Google Scholar
Wilhelm, A., Aldridge, V., Haldar, D., Naylor, A. J., Weston, C. J., Hedegaard, D., et al. (2016). CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut, 65(7), 1175–1185.
CAS
Article
Google Scholar
Yano, H., Oyanagi, E., Kato, Y., Samejima, Y., Sasaki, J., & Utsumi, K. (2010). L-carnitine is essential to beta-oxidation of quarried fatty acid from mitochondrial membrane by PLA(2). Molecular Cellular Biochemistry, 342(1–2), 95–100.
CAS
Article
Google Scholar
Yoshida, K., Nishida, W., Hayashi, K., Ohkawa, Y., Ogawa, A., Aoki, A., et al. (2003). Vascular remodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo. Circulation, 108(14), 1746–1752.
Article
Google Scholar