Skip to main content
Log in

SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

While liquid chromatography coupled to mass spectrometric detection in the selected reaction monitoring detection mode offers the best quantification sensitivity for omics, the number of target analytes is limited, must be predefined and specific methods developed. Data independent acquisition (DIA), including SWATH using quadrupole time of flight or orbitrap mass spectrometers and generic acquisition methods, has emerged as a powerful alternative technique for quantitative and qualitative analyses since it can cover a wide range of analytes without predefinition.

Objectives

Here we review the current state of DIA, SWATH-MS and highlight novel acquisition strategies for metabolomics and lipidomics and opportunities for data analysis tools.

Method

Different databases were searched for papers that report developments and applications of DIA and in particular SWATH-MS in metabolomics and lipidomics.

Results

DIA methods generate digital sample records that can be mined retrospectively as further knowledge is gained and, with standardized acquisition schemes, used in multiple studies. The different chemical spaces of metabolites and lipids require different specificities, hence different acquisition and data processing approaches must be considered for their analysis.

Conclusions

Although the hardware and acquisition modes are well defined for SWATH-MS, a major challenge for routine use remains the lack of appropriate software tools capable of handling large datasets and large numbers of analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adusumilli, R., & Mallick, P. (2017). Data Conversion with ProteoWizard msConvert. Methods in Molecular Bioliology,1550, 339–368.

    Article  CAS  Google Scholar 

  • Almeida, R., Pauling, J. K., Sokol, E., Hannibal-Bach, H. K., & Ejsing, C. S. (2015). Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. Journal of the American Society for Mass Spectrometry,26, 133–148.

    Article  CAS  PubMed  Google Scholar 

  • Anjo, S. I., Santa, C., & Manadas, B. (2017). SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics,17, 23.

    Article  CAS  Google Scholar 

  • Bilbao, A., Zhang, Y., Varesio, E., Luban, J., Strambio-De-Castillia, C., Lisacek, F., et al. (2015). Ranking Fragment Ions Based on Outlier Detection for Improved Label-Free Quantification in Data-Independent Acquisition LC-MS/MS. Journal of Proteome Research,14, 4581–4593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonner, R., & Hopfgartner, G. (2016). SWATH acquisition mode for drug metabolism and metabolomics investigations. Bioanalysis,8, 1735–1750.

    Article  CAS  PubMed  Google Scholar 

  • Bonner, R. and Hopfgartner, G. (2018) SWATH data independent acquisition mass spectrometry for metabolomics. TrAC Trends in Analytical Chemistry.

  • Bruderer, T., Varesio, E., Hidasi, A. O., Duchoslav, E., Burton, L., Bonner, R., et al. (2018). Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition. Analytical Bioanalytical Chemistry,410, 1873–1884.

    Article  CAS  PubMed  Google Scholar 

  • Bruderer, T., Varesio, E., & Hopfgartner, G. (2017). The use of LC predicted retention times to extend metabolites identification with SWATH data acquisition. Journal of Chromatogr B,1071, 3–10.

    Article  CAS  Google Scholar 

  • Burla, B., Arita, M., Arita, M., Bendt, A. K., Cazenave-Gassiot, A., Dennis, E. A., et al. (2018). MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. Journal of Lipid Research,59, 2001–2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahill, J. F., Kertesz, V., Porta, T., LeBlanc, J. C. Y., Heeren, R. M. A., & Van Berkel, G. J. (2018). Solvent effects on differentiation of mouse brain tissue using laser microdissection ‘cut and drop’ sampling with direct mass spectral analysis. Rapid Communications in Mass Spectrometry,32, 414–422.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, P. C., Han, X., Xu, T., CociorvaCarvalho, D. M. D. G., Barbosa, V. C., & Yates, I. J. R. (2010). XDIA: improving on the label-free data-independent analysis. Bioinformatics,26, 847–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey, B., & Yinfa, M. (2019). Current trends in cancer biomarker discovery using urinary metabolomics: achievements and new challenges. Current Medicinal Chemistry,26, 5–28.

    Article  CAS  Google Scholar 

  • Cífková, E., Holčapek, M., Lísa, M., Ovčačíková, M., Lyčka, A., Lynen, F., et al. (2012). Nontargeted Quantitation of Lipid Classes Using Hydrophilic Interaction Liquid Chromatography-Electrospray Ionization Mass Spectrometry with Single Internal Standard and Response Factor Approach. Analytical Chemistry,84, 10064–10070.

    Article  PubMed  CAS  Google Scholar 

  • Donot, F., Cazals, G., Gunata, Z., Egron, D., Malinge, J., Strub, C., et al. (2013). Analysis of neutral lipids from microalgae by HPLC-ELSD and APCI-MS/MS. Journal of Chromatography B,9(42–943), 98–106.

    Article  CAS  Google Scholar 

  • Gethings, L. A., Richardson, K., Wildgoose, J., Lennon, S., Jarvis, S., Bevan, C. L., et al. (2017a). Lipid profiling of complex biological mixtures by liquid chromatography/mass spectrometry using a novel scanning quadrupole data-independent acquisition strategy. Rapid Communication in Mass Spectrometry,31, 1599–1606.

    Article  CAS  Google Scholar 

  • Gethings, L.A., Hughes, C.J., Richardson, K., Wildgoose, J., Vissers, J.P., Plumb, R.S. and Langridge, J.I. (2017b) Metabolomic Workflow Utilizing Rapid Microbore Metabolic Processing (RAMMP) in Conjunction with SONAR, Waters Application Note.

  • Gillet, L. C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., et al. (2012). Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Molecular & Cellular Proteomics,11(O111), 016717.

    Google Scholar 

  • Hájek, R., Lísa, M., Khalikova, M., Jirásko, R., Cífková, E., Študent, V., et al. (2018). HILIC/ESI-MS determination of gangliosides and other polar lipid classes in renal cell carcinoma and surrounding normal tissues. Analytical and Bioanalytical Chemistry,410, 6585–6594.

    Article  PubMed  CAS  Google Scholar 

  • Hines, K. M., Herron, J., & Xu, L. (2017). Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. Journal of Lipid Research,58, 809–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfgartner, G. (2011). Can MS fully exploit the benefits of fast chromatography? Bioanalysis,3, 121–123.

    Article  CAS  PubMed  Google Scholar 

  • Hopfgartner, G., Tonoli, D., & Varesio, E. (2012). High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Analytical and Bioanalytical Chemistry,402, 2587–2596.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Q., Yang, L., Luo, J., Guo, L., Wang, Z., Yang, X., et al. (2015). SWATH enables precise label-free quantification on proteome scale. Proteomics,15, 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  • Juvvadi, P. R., Moseley, M. A., Hughes, C. J., Soderblom, E. J., Lennon, S., Perkins, S. R., et al. (2018). Scanning Quadrupole Data-Independent Acquisition, Part B: Application to the Analysis of the Calcineurin-Interacting Proteins during Treatment of Aspergillus fumigatus with Azole and Echinocandin Antifungal Drugs. Journal of Proteome Research,17, 780–793.

    Article  CAS  PubMed  Google Scholar 

  • Kind, T., Liu, K. H., Lee, D. Y., DeFelice, B., Meissen, J. K., & Fiehn, O. (2013). LipidBlast in silico tandem mass spectrometry database for lipid identification. Nature Methods,10, 755–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, A., Baginski, M., Morikawa, Y., Rainville, P. D., Gethings, L. A., Wilson, I. D., et al. (2019). Application of a Novel Mass Spectral Data Acquisition Approach to Lipidomic Analysis of Liver Extracts from Sitaxentan-Treated Liver-Humanized PXB Mice. Journal of Proteome Research,18(11), 4055–4064.

    Article  CAS  PubMed  Google Scholar 

  • Klont, F., Jahn, S., Grivet, C., Konig, S., Bonner, R., & Hopfgartner, G. (2020). SWATH data independent acquisition mass spectrometry for screening of xenobiotics in biological fluids: Opportunities and challenges for data processing. Talanta,211, 120747.

    Article  CAS  PubMed  Google Scholar 

  • Lanznaster, D., de Assis, D. R., Corcia, P., Pradat, P.-F., & Blasco, H. (2018). Metabolomics Biomarkers: A Strategy Toward Therapeutics Improvement in ALS. Frontiers in neurology,9, 1126–1126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebisch, G., Ekroos, K., Hermansson, M., & Ejsing, C. S. (2017). Reporting of lipidomics data should be standardized. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids,1862, 747–751.

    Article  CAS  PubMed  Google Scholar 

  • Lísa, M., & Holčapek, M. (2015). High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography-Mass Spectrometry. Analytical Chemistry,87, 7187–7195.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, C., Gillet, L., Rosenberger, G., Amon, S., Collins, B., & Aebersold, R. (2018). Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Molecular Systems Biology,14, 23.

    Article  Google Scholar 

  • Messner, C., Demichev, V., Bloomfield, N., Ivosev, G., Wasim, F., Zelezniak, A., Lilley, K., Tate, S. and Ralser, M. (2019) ScanningSWATH enables ultra-fast proteomics using high-flow chromatography and minute-scale gradients. bioRxiv, 656793.

  • Moseley, M. A., Hughes, C. J., Juvvadi, P. R., Soderblom, E. J., Lennon, S., Perkins, S. R., et al. (2018). Scanning Quadrupole Data-Independent Acquisition, Part A: Qualitative and Quantitative Characterization. Journal of Proteome Research,17, 770–779.

    Article  CAS  PubMed  Google Scholar 

  • Naz, S., Gallart-Ayala, H., Reinke, S. N., Mathon, C., Blankley, R., Chaleckis, R., et al. (2017). Development of a Liquid Chromatography High Resolution Mass Spectrometry Metabolomics Method with High Specificity for Metabolite Identification Using All Ion Fragmentation Acquisition. Analytical Chemistry,89, 7933–7942.

    Article  CAS  PubMed  Google Scholar 

  • Panchaud, A., Jung, S., Shaffer, S. A., Aitchison, J. D., & Goodlett, D. R. (2011). Faster, Quantitative, and Accurate Precursor Acquisition Independent From Ion Count. Analytical Chemistry,83, 2250–2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raetz, M., Duchoslav, E., Bonner, R., & Hopfgartner, G. (2019). Hybrid SWATH/MS and HR-SRM/MS acquisition for phospholipidomics using QUAL/QUANT data processing. Analytical Bioanalytical Chemistry,411, 5681–5690.

    Article  CAS  PubMed  Google Scholar 

  • Rampler, E., Criscuolo, A., Zeller, M., El Abiead, Y., Schoeny, H., Hermann, G., et al. (2018). A Novel Lipidomics Workflow for Improved Human Plasma Identification and Quantification Using RPLC-MSn Methods and Isotope Dilution Strategies. Analytical Chemistry,90, 6494–6501.

    Article  CAS  PubMed  Google Scholar 

  • Rao, S., Walters, K. B., Wilson, L., Chen, B., Bolisetty, S., Graves, D., et al. (2016). Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. American Journal of Physiology-Renal Physiology,310, F1136–F1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruskic, D., Girard, M., Picenoni, R., Boehm, G. and Hopfgartner, G. (2018) Automated Parallel Derivatization Strategy with Broad Metabolite Coverage Coupled to SWATH/MS Data Acquisition for Qualitative and Quantitative Analysis. Proceedings of the 66th ASMS conference on mass spectrometry and allied topics 2018.

  • Schlotterbeck, J., Chatterjee, M., Gawaz, M., & Lammerhofer, M. (2019). Comprehensive MS/MS profiling by UHPLC-ESI-QTOF-MS/MS using SWATH data-independent acquisition for the study of platelet lipidomes in coronary artery disease. Analytical Chimica Acta,1046, 1–15.

    Article  CAS  Google Scholar 

  • Schwaiger-Haber, M., Hermann, G., El Abiead, Y., Rampler, E., Wernisch, S., Sas, K., et al. (2019). Proposing a validation scheme for (13)C metabolite tracer studies in high-resolution mass spectrometry. Analytical Bioanalytical Chemistry,411, 3103–3113.

    Article  CAS  PubMed  Google Scholar 

  • Schwalbe-Herrmann, M., Willmann, J., & Leibfritz, D. (2010). Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. Journal of Chromatography A,1217, 5179–5183.

    Article  CAS  PubMed  Google Scholar 

  • Siegel, D., Meinema, A. C., Permentier, H., Hopfgartner, G., & Bischoff, R. (2014). Integrated quantification and identification of aldehydes and ketones in biological samples. Analytical Chemistry,86, 5089–5100.

    Article  CAS  PubMed  Google Scholar 

  • Simons, B., Kauhanen, D., Sylvänne, T., Tarasov, K., Duchoslav, E., & Ekroos, K. (2012). Shotgun Lipidomics by Sequential Precursor Ion Fragmentation on a Hybrid Quadrupole Time-of-Flight Mass Spectrometer. Metabolites,2, 195–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Li, L., Liao, M., Su, M., Wan, C., Zhang, L., et al. (2018). A systematic data acquisition and mining strategy for chemical profiling of Aster tataricus rhizoma (Ziwan) by UHPLC-Q-TOF-MS and the corresponding anti-depressive activity screening. Journal of Pharmaceutical and Biomedical Analysis,154, 216–226.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z.G., Song, J.Y., Zhang, X.X., Wang, A.J., Guo, Y., Yang, Y., Wang, X.M., Xu, K.Y. and Deng, J.F. (2018b) SWATH(HM)-Based Metabolomics of Follicular Fluid in Patients Shows That Progesterone Adversely Affects Oocyte Quality. Biomed Research International.

  • Takeda, H., Izumi, Y., Takahashi, M., Paxton, T., Tamura, S., Koike, T., et al. (2018). Widely-targeted quantitative lipidomics method by supercritical fluid chromatography triple quadrupole mass spectrometry. Journal of Lipid Research,59, 1283–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonoli, D., Varesio, E., & Hopfgartner, G. (2012). Quantification of acetaminophen and two of its metabolites in human plasma by ultra-high performance liquid chromatography-low and high resolution tandem mass spectrometry. Journal of Chromatogry B,904, 42–50.

    Article  CAS  Google Scholar 

  • Tsugawa, H., Arita, M., Kanazawa, M., Ogiwara, A., Bamba, T., & Fukusaki, E. (2013). MRMPROBS: A Data Assessment and Metabolite Identification Tool for Large-Scale Multiple Reaction Monitoring Based Widely Targeted Metabolomics. Analytical Chemistry,85, 5191–5199.

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. (2015). MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods,12, 523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyanova, S., Temu, T., & Cox, J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols,11, 2301.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Yin, Y., & Zhu, Z.-J. (2019). Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Analytical and Bioanalytical Chemistry.,411(19), 4349–4357.

    Article  CAS  PubMed  Google Scholar 

  • Weisbrod, C. R., Eng, J. K., Hoopmann, M. R., Baker, T., & Bruce, J. E. (2012). Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification. Journal of Proteome Research,11, 1621–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery,15, 473–484.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., et al. (2018). HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Research,46, D608–D617.

    Article  CAS  PubMed  Google Scholar 

  • Wrona, M., Mauriala, T., Bateman, K. P., Mortishire-Smith, R. J., & O'Connor, D. (2005). 'All-in-One' analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Communications in Mass Spectrometry,19, 2597–2602.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J. F., Zhou, B., & Ressom, H. W. (2012). Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trac-Trends in Analytical Chemistry,32, 1–14.

    Article  CAS  Google Scholar 

  • Yan, L., Zhou, J., Wang, D., Si, D., Liu, Y., Zhong, L., et al. (2018). Unbiased lipidomic profiling reveals metabolomic changes during the onset and antipsychotics treatment of schizophrenia disease. Metabolomics,14, 80.

    Article  PubMed  CAS  Google Scholar 

  • Zha, H. B., Cai, Y. P., Yin, Y. D., Wang, Z. Z., Li, K., & Zhu, Z. J. (2018). SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery. Analytical Chemistry,90, 4062–4070.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Bilbao, A., Bruderer, T., Luban, J., Strambio-De-Castillia, C., Lisacek, F., et al. (2015). The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition. Journal of Proteome Research,14, 4359–4371.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Chen, Y., & Subramanian, R. (2014). Comparison of information-dependent acquisition, SWATH, and MS(All) techniques in metabolite identification study employing ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Analytical Chemistry,86, 1202–1209.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Hopfgartner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raetz, M., Bonner, R. & Hopfgartner, G. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Metabolomics 16, 71 (2020). https://doi.org/10.1007/s11306-020-01692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01692-0

Keywords

Navigation