Skip to main content
Log in

Wine and grape marc spirits metabolomics

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Mass spectrometry (MS)-based and nuclear magnetic resonance (NMR) spectroscopic analyses play a key role in the field of metabolomics due to their important advantages. The use of metabolomics in wine and grape marc spirits allows a more holistic perspective in monitoring and gaining information on the making processes and thus it can assist on the improvement of their quality.

Objectives

This review surveys the latest metabolomics approaches for wine and grape marc spirits with a focus on the description of MS-based and NMR spectroscopic analytical techniques.

Methods

We reviewed the literature to identify metabolomic studies of wine and grape marc spirits that were published until the end of 2017, with the key term combinations of ‘metabolomics’, ‘wine’ and ‘grape marc spirits’. Through the reference lists from these studies, additional articles were identified.

Results

The results of this review showed that the application of different metabolomics approaches has significantly increased the knowledge of wine metabolome and grape marc spirits; however there is not yet a single analytical platform that can completely separate, detect and identify all metabolites in one analysis.

Conclusions

The authentication and quality control of wines and grape marc spirits has to be taken with caution, since the product’s chemical composition could be affected by many factors. Despite intrinsic limitations, NMR spectroscopy and MS based strategies remain the key analytical methods in metabolomics studies. Authenticity, traceability and health issues related to their consumption are the major research initiatives in wine and grape marc spirits metabolomics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reproduced with permission from Fotakis et al. 2013)

Fig. 2

(Reproduced with permission from Malec et al. 2017)

Fig. 3

(Reproduced with permission from Arbulu et al. 2013)

Similar content being viewed by others

Abbreviations

OIV:

Organization of Vine and Wine

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

QC:

Quality control

LC:

Liquid chromatography

GC:

Gas chromatography

CE:

Capillary electrophoresis

FT:

Fourier transformation

ICR:

Ion cyclotron resonance

MS/MS:

Tandem mass spectrometry

PCA:

Principal component analysis

PLS:

Partial least squares

DA:

Discriminant analysis

LC:

Liquid chromatography

ESI:

Electrospray ionization

APCI:

Atmospheric pressure chemical ionization

TQ:

Triple quadrupole

QTOF:

Quadrupole time of flight

SRM:

Selected reaction monitoring

MRM:

Multiple reaction monitoring

HILIC:

Hydrophilic interaction liquid chromatography

RPLC:

Reversed phase liquid chromatography

UHPLC:

Ultrahigh performance liquid chromatography

SPME:

Solid phase microextraction

HS:

Headspace

LLE:

Liquid liquid extraction

SPE:

Solid phase extraction

SBSE:

Stir-bar sorptive extraction

SIM:

Selected ion monitoring

IDYs:

Active dry yeasts

References

  • Acunha, T., Simó, C., Ibáñez, C., Gallardo, A., & Cifuentes, A. (2016). Anionic metabolite profiling by capillary electrophoresis-mass spectrometry using a noncovalent polymeric coating. Orange juice and wine as case studies. Journal of Chromatography A, 1428, 326–335.

    CAS  PubMed  Google Scholar 

  • Alañón, M. E., Pérez-Coello, M. S., & Marina, M. L. (2015). Wine science in the metabolomics era. TrAC—Trends in Analytical Chemistry, 74, 1–20.

    Google Scholar 

  • Ali, K., Maltese, F., Toepfer, R., Choi, Y. H., & Verpoorte, R. (2011). Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses. Journal of Biomolecular NMR, 49(3–4), 255–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • ALS (2008). Lab science news-technical blog. Retrieved Sept 13, 2018, from http://www.caslab.com/News/gcms-full-scan-vs-cgms-sim.html.

  • Anastasiadi, M., Zira, A., Magiatis, P., Haroutounian, S. A., Skaltsounis, A. L., & Mikros, E. (2009). H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data. Journal of Agricultural and Food Chemistry, 57(23), 11067–11074.

    CAS  PubMed  Google Scholar 

  • Arapitsas, P., Della Corte, A., Gika, H., Narduzzi, L., Mattivi, F., & Theodoridis, G. (2016a). Studying the effect of storage conditions on the metabolite content of red wine using HILIC LC–MS based metabolomics. Food Chemistry, 197, 1331–1340.

    CAS  PubMed  Google Scholar 

  • Arapitsas, P., Ugliano, M., Perenzoni, D., Angeli, A., Pangrazzi, P., & Mattivi, F. (2016b). Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. Journal of Chromatography A, 1429, 155–165.

    CAS  PubMed  Google Scholar 

  • Arbulu, M., Sampedro, M. C., Gómez-Caballero, A., Goicolea, M. A., & Barrio, R. J. (2015). Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines. Analytica Chimica Acta, 858(1), 32–41.

    CAS  PubMed  Google Scholar 

  • Arbulu, M., Sampedro, M. C., Sanchez-Ortega, A., Gómez-Caballero, A., Unceta, N., Goicolea, M. A., et al. (2013). Characterisation of the flavour profile from Graciano Vitis vinifera wine variety by a novel dual stir bar sorptive extraction methodology coupled to thermal desorption and gas chromatography–mass spectrometry. Analytica Chimica Acta, 777, 41–48.

    CAS  PubMed  Google Scholar 

  • Begou, O., Gika, H. G., Wilson, I. D., & Theodoridis, G. (2017). Hyphenated MS-based targeted approaches in metabolomics. The Analyst, 142, 3079–3100.

    CAS  PubMed  Google Scholar 

  • Belitz, H. D., Grosch, W., & Schieberle, P. (2004). Food chemistry. New York: Springer.

    Google Scholar 

  • Bovo, B., Carlot, M., Lombardi, A., Lomolino, G., Lante, A., Giacomini, A., & Corich, V. (2014). Exploring the use of Saccharomyces cerevisiae commercial strain and Saccharomycodes ludwigii natural isolate for grape marc fermentation to improve sensory properties of spirits. Food Microbiology, 41, 33–41.

    CAS  PubMed  Google Scholar 

  • Bruker (2018). Wine-profilling module of the NMR FoodScreener. Retrieved Sept 13, 2018, from https://www.bruker.com/products/mr/nmr-food-screening/wine-profiling/overview.html.

  • Budić-Leto, I., Zdunić, G., Gajdoš-Kljusurić, J., Mucalo, A., & Vrhovšek, U. (2017). Differentiation between Croatian dessert wine Prošek and dry wines based on phenolic composition. Journal of Food Composition and Analysis, 62(May), 211–216.

    Google Scholar 

  • Buescher, J. M., Moco, S., Sauer, U., & Zamboni, N. (2010). Ultrahigh performance liquid chromatography–tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Analytical Chemistry, 82(11), 4403–4412.

    CAS  PubMed  Google Scholar 

  • Capozzi, F., & Bordoni, A. (2013). Foodomics: A new comprehensive approach to food and nutrition. Genes and Nutrition, 8(1), 1–4.

    CAS  PubMed  Google Scholar 

  • Carlin, S., Vrhovsek, U., Franceschi, P., Lotti, C., Bontempo, L., Camin, F., et al. (2016). Regional features of northern Italian sparkling wines, identified using solid-phase micro extraction and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Food Chemistry, 208, 68–80.

    CAS  PubMed  Google Scholar 

  • Castro, C. C., Martins, R. C., Teixeira, J. A., & Ferreira, A. C. S. (2014). Application of a high-throughput process analytical technology metabolomics pipeline to Port wine forced ageing process. Food Chemistry, 143, 384–391.

    CAS  PubMed  Google Scholar 

  • Cortés, S., Rodríguez, R., Salgado, J. M., & Domínguez, J. M. (2011). Comparative study between Italian and Spanish grape marc spirits in terms of major volatile compounds. Food Control, 22(5), 673–680.

    Google Scholar 

  • Cozzolino, D. (2016). Metabolomics in grape and wine: Definition, current status and future prospects. Food Analytical Methods, 9(11), 2986–2997.

    Google Scholar 

  • Cubero-Leon, E., Peñalver, R., & Maquet, A. (2014). Review on metabolomics for food authentication. FRIN, 60, 95–107.

    CAS  Google Scholar 

  • Dall’Asta, C., Cirlini, M., Morini, E., & Galaverna, G. (2011). Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. Journal of Chromatography A, 1218(42), 7557–7565.

    PubMed  Google Scholar 

  • De Pascali, S. A., Coletta, A., Del Coco, L., Basile, T., Gambacorta, G., & Fanizzi, P. (2014). Viticultural practice and winemaking effects on metabolic profile of Negroamaro. Food Chemistry, 161, 112–119.

    PubMed  Google Scholar 

  • Degu, A., Hochberg, U., Sikron, N., Venturini, L., Buson, G., Ghan, R., et al. (2014). Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biology, 14(1), 1–20.

    Google Scholar 

  • Delcambre, A., & Saucier, C. (2013). High-throughput oenomics: Shotgun polyphenomics of wines. Analytical Chemistry, 85(20), 9736–9741.

    CAS  PubMed  Google Scholar 

  • Díaz, R., Gallart-Ayala, H., Sancho, J. V., Nuñez, O., Zamora, T., Martins, C. P. B., et al. (2016). Told through the wine: A liquid chromatography–mass spectrometry interplatform comparison reveals the influence of the global approach on the final annotated metabolites in non-targeted metabolomics. Journal of Chromatography A, 1433, 90–97.

    PubMed  Google Scholar 

  • Fabres, P. J., Collins, C., Cavagnaro, T. R., & López, C. M. R. (2017). A concise review on multi-omics data integration for terroir analysis in Vitis vinifera. Frontiers in Plant Science, 8, 1–8.

    Google Scholar 

  • Fan, S., Zhong, Q., Fauhl-Hassek, C., Pfister, M. K.-H., Horn, B., & Huang, Z. (2017). Classification of Chinese wine varieties using 1H NMR spectroscopy combined with multivariate statistical analysis. Food Control. https://doi.org/10.1016/j.foodcont.2017.11.002.

    Article  Google Scholar 

  • FAO-OIV FOCUS. (2016). Table and dried grapes. Retrieved Nov 23, 2017, from http://www.oiv.int/js/lib/pdfjs/web/viewer.html?file=/public/medias/5268/fao-oiv-focus-2016.pdf.

  • Flamini, R., De Rosso, M., De Marchi, F., Dalla Vedova, A., Panighel, A., Gardiman, M., et al. (2013). An innovative approach to grape metabolomics: Stilbene profiling by suspect screening analysis. Metabolomics, 9(6), 1243–1253.

    CAS  Google Scholar 

  • Fotakis, C., Christodouleas, D., Kokkotou, K., Zervou, M., Zoumpoulakis, P., Moulos, P., et al. (2013). NMR metabolite profiling of Greek grape marc spirits. Food Chemistry, 138(2–3), 1837–1846.

    CAS  PubMed  Google Scholar 

  • Fotakis, C., & Zervou, M. (2016). NMR metabolic fingerprinting and chemometrics driven authentication of Greek grape marc spirits. Food Chemistry, 196, 760–768.

    CAS  PubMed  Google Scholar 

  • Franco-Duarte, R., Umek, L., Mendes, I., Castro, C. C., Fonseca, N., Martins, R., et al. (2016). New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chemistry, 211, 509–520.

    CAS  PubMed  Google Scholar 

  • García-Beneytez, E., Cabello, F., & Revilla, E. (2003). Analysis of grape and wine anthocyanins by HPLC–MS. Journal of Agricultural and Food Chemistry, 51(19), 5622–5629.

    PubMed  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., Earll, M., & Wilson, I. D. (2012). A QC approach to the determination of day-to-day reproducibility and robustness of LC–MS methods for global metabolite profiling in metabonomics/metabolomics. Bioanalysis, 4(18), 2239–2247.

    CAS  PubMed  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., Plumb, R. S., & Wilson, I. D. (2014a). Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. Journal of Pharmaceutical and Biomedical Analysis, 87, 12–25.

    CAS  PubMed  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., Vrhovsek, U., & Mattivi, F. (2012). Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1259, 121–127.

    CAS  PubMed  Google Scholar 

  • Gika, H. G., Wilson, I. D., & Theodoridis, G. A. (2014b). LC–MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 966, 1–6.

    CAS  PubMed  Google Scholar 

  • Godelmann, R., Fang, F., Humpfer, E., Schütz, B., Bansbach, M., Schäfer, H., et al. (2013). Targeted and nontargeted wine analysis by1H NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: Grape variety, geographical origin, year of vintage. Journal of Agricultural and Food Chemistry, 61(23), 5610–5619.

    CAS  PubMed  Google Scholar 

  • Haggerty, J., Bowyer, P. K., Jiranek, V., & Taylor, D. K. (2016). Optimisation and validation of a high-throughput semi-quantitative solid-phase microextraction method for analysis of fermentation aroma compounds in metabolomic screening studies of wines. Australian Journal of Grape and Wine Research, 22(1), 3–10.

    CAS  Google Scholar 

  • Hayasaka, Y., Baldock, G. A., Parker, M., Pardon, K. H., Black, C. A., Herderich, M. J., et al. (2010). Glycosylation of smoke-derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke. Journal of Agricultural and Food Chemistry, 58(20), 10989–10998.

    CAS  PubMed  Google Scholar 

  • Hebrero, E. (1988). High performance liquid chromatography–diode array spectroscopy identification of anthocyanins of Vitis vinifera variety Tempranillo. American Journal of Enology and Viticulture, 39(3), 227–233.

    CAS  Google Scholar 

  • Hong, Y. S., Cilindre, C., Liger-Belair, G., Jeandet, P., Hertkorn, N., & Schmitt-Kopplin, P. (2011). Metabolic influence of Botrytis cinerea infection in champagne base wine. Journal of Agricultural and Food Chemistry, 59(13), 7237–7245.

    CAS  PubMed  Google Scholar 

  • Hu, B., Zhao, Q., Yue, Y., Zhu, J., Lu, G., Li, H., et al. (2016). 1H Nuclear magnetic resonance-based metabolomic study for Cabernet Sauvignon wines in different vintages. PeerJ Preprints. https://doi.org/10.7287/PEERJ.PREPRINTS.2332V1.

    Article  Google Scholar 

  • Julia, F. (2007). Agribusiness handbook: Wine sector, 37. Retrieved Nov 23, 2017, from http://www.fao.org/docrep/012/al176e/al176e.pdf.

  • Karpe, A. V., Beale, D. J., Morrison, P. D., Harding, I. H., & Palombo, E. A. (2015). Untargeted metabolic profiling of Vitis vinifera during fungal degradation. FEMS Microbiology Letters, 362(10), 1–6.

    Google Scholar 

  • Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C., & Hankemeier, T. (2011). Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics, 7(3), 307–328.

    CAS  PubMed  Google Scholar 

  • Lambert, M., Meudec, E., Verbaere, A., Mazerolles, G., Wirth, J., Masson, G., et al. (2015). A high-throughput UHPLC–QqQ–MS method for polyphenol profiling in rosé wines. Molecules, 20(5), 7890–7914.

    CAS  PubMed  Google Scholar 

  • Lee, J. E., Hong, Y. S., & Lee, C. H. (2009). Characterization of fermentative behaviors of lactic acid bacteria in grape wines through 1H NMR- and GC-based metabolic profiling. Journal of Agricultural and Food Chemistry, 57(11), 4810–4817.

    CAS  PubMed  Google Scholar 

  • Lee, J. E., Hwang, G. S., Lee, C. H., & Hong, Y. S. (2009). Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria. Journal of Agricultural and Food Chemistry, 57(22), 10772–10783.

    CAS  PubMed  Google Scholar 

  • Lee, J. E., Hwang, G. S., Van Den Berg, F., Lee, C. H., & Hong, Y. S. (2009). Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study. Analytica Chimica Acta, 648(1), 71–76.

    CAS  PubMed  Google Scholar 

  • López-Rituerto, E., Avenoza, A., Busto, J. H., & Peregrina, J. M. (2010). Evidence of metabolic transformations of amino acids into higher alcohols through 13C NMR studies of wine alcoholic fermentation. Journal of Agricultural and Food Chemistry, 58(8), 4923–4927.

    PubMed  Google Scholar 

  • López-Rituerto, E., Avenoza, A., Busto, J. H., & Peregrina, J. M. (2013). NMR study of histidine metabolism during alcoholic and malolactic fermentations of wine and their influence on histamine production. Journal of Agricultural and Food Chemistry, 61(39), 9464–9469.

    PubMed  Google Scholar 

  • López-Rituerto, E., Savorani, F., Avenoza, A., Busto, J. H., Peregrina, J. M., & Engelsen, S. B. (2012). Investigations of La Rioja Terroir for wine production using 1H NMR metabolomics. Journal of Agricultural and Food Chemistry, 60(13), 3452–3461.

    PubMed  Google Scholar 

  • Malec, P. A., Oteri, M., Inferrera, V., Cacciola, F., Mondello, L., et al. (2017). Determination of amines and phenolic acids in wine with benzoyl chloride derivatization and liquid chromatography-mass spectrometry. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2017.07.061.

    Article  PubMed  Google Scholar 

  • Mazzei, P., Spaccini, R., Francesca, N., Moschetti, G., & Piccolo, A. (2013). Metabolomic by 1H NMR spectroscopy differentiates “Fiano Di Avellino” white wines obtained with different yeast strains. Journal of Agricultural and Food Chemistry, 61(45), 10816–10822.

    CAS  PubMed  Google Scholar 

  • Michopoulos, F., Whalley, N., Theodoridis, G., Wilson, I. D., Dunkley, T. P. J., & Critchlow, S. E. (2014). Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled to tandem mass spectrometry: Applications to serum, urine and tissue extracts. Journal of Chromatography A, 1349, 60–68.

    CAS  PubMed  Google Scholar 

  • Millán, L., Sampedro, M. C., Sánchez, A., Delporte, C., Van Antwerpen, P., Goicolea, M. A., & Barrio, R. J. (2016). Liquid chromatography–quadrupole time of flight tandem mass spectrometry-based targeted metabolomic study for varietal discrimination of grapes according to plant sterols content. Journal of Chromatography A, 1454, 67–77.

    PubMed  Google Scholar 

  • Moreno-Arribas, M. V. (2016). Wine safety, consumer preference, and human health. Madrid: Springer. https://doi.org/10.1007/978-3-319-24514-0.

    Book  Google Scholar 

  • Moros, G., Chatziioannou, A. C., Gika, H. G., Raikos, N., & Theodoridis, G. (2017). Investigation of the derivatization conditions for GC–MS metabolomics of biological samples. Bioanalysis, 9(1), 53–65.

    CAS  PubMed  Google Scholar 

  • Nasi, A., Ferranti, P., Amato, S., & Chianese, L. (2008). Identification of free and bound volatile compounds as typicalness and authenticity markers of non-aromatic grapes and wines through a combined use of mass spectrometric techniques. Food Chemistry, 110(3), 762–768.

    CAS  Google Scholar 

  • Ortiz-Villanueva, E., Benavente, F., Piña, B., Sanz-Nebot, V., Tauler, R., & Jaumot, J. (2017). Knowledge integration strategies for untargeted metabolomics based on MCR–ALS analysis of CE–MS and LC–MS data. Analytica Chimica Acta, 978, 10–23.

    CAS  PubMed  Google Scholar 

  • Papotti, G., Bertelli, D., Graziosi, R., Silvestri, M., Bertacchini, L., Durante, C., et al. (2013). Application of one- and two-dimensional NMR spectroscopy for the characterization of protected designation of origin Lambrusco wines of modena. Journal of Agricultural and Food Chemistry, 61(8), 1741–1746.

    CAS  PubMed  Google Scholar 

  • Picone, G., Trimigno, A., Tessarin, P., Donnini, S., Rombolà, A. D., & Capozzi, F. (2016). 1H NMR foodomics reveals that the biodynamic and the organic cultivation managements produce different grape berries (Vitis vinifera L. cv. Sangiovese). Food Chemistry, 213, 187–195.

    CAS  PubMed  Google Scholar 

  • Pinu, F. R., Edwards, P. J. B., Jouanneau, S., Kilmartin, P. A., Gardner, R. C., & Villas-Boas, S. G. (2014). Sauvignon blanc metabolomics: Grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Metabolomics, 10(4), 556–573.

    CAS  Google Scholar 

  • Pisano, P. L., Silva, M. F., & Olivieri, A. C. (2015). Anthocyanins as markers for the classification of Argentinean wines according to botanical and geographical origin. Chemometric modeling of liquid chromatography–mass spectrometry data. Food Chemistry, 175, 174–180.

    CAS  PubMed  Google Scholar 

  • Prakash, S., Iturmendi, N., Grelard, A., Moine, V., & Dufourc, E. (2016). Quantitative analysis of Bordeaux red wine precipitates by solid-state NMR: Role of tartrates and polyphenols. Food Chemistry, 199, 229–237.

    CAS  PubMed  Google Scholar 

  • Rainville, P. D., Theodoridis, G., Plumb, R. S., & Wilson, I. D. (2014). Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping. TrAC—Trends in Analytical Chemistry, 61, 181–191.

    CAS  Google Scholar 

  • Rochfort, S., Ezernieks, V., Bastian, S. E. P., & Downey, M. O. (2010). Sensory attributes of wine influenced by variety and berry shading discriminated by NMR metabolomics. Food Chemistry, 121(4), 1296–1304.

    CAS  Google Scholar 

  • Rodríguez-Bencomo, J. J., Andújar-Ortiz, I., Moreno-Arribas, M. V., Simó, C., González, J., Chana, A., et al. (2014). Impact of glutathione-enriched inactive dry yeast preparations on the stability of terpenes during model wine aging. Journal of Agricultural and Food Chemistry, 62(6), 1373–1383.

    PubMed  Google Scholar 

  • Roe, M. R., Cohen, J. D., & Hegeman, A. D. (2014). Regioselective solvent-phase deuteration of polyphenolic compounds informs their identification by mass spectrometry. Analytical Biochemistry, 452(1), 76–85.

    CAS  PubMed  Google Scholar 

  • Roullier-Gall, C., Hemmler, D., Gonsior, M., Li, Y., Nikolantonaki, M., Aron, A., et al. (2017). Sulfites and the wine metabolome. Food Chemistry, 237, 106–113.

    CAS  PubMed  Google Scholar 

  • Roullier-Gall, C., Witting, M., Gougeon, R. D., & Schmitt-Kopplin, P. (2014). High precision mass measurements for wine metabolomics. Frontiers in Chemistry, 2(November), 1–9.

    CAS  Google Scholar 

  • Roullier-Gall, C., Witting, M., Moritz, F., Gil, R. B., Goffette, D., Valade, M., et al. (2016). Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of hormesis. Food Chemistry, 203, 207–215.

    CAS  PubMed  Google Scholar 

  • Roullier-Gall, C., Witting, M., Tziotis, D., Ruf, A., Gougeon, R. D., & Schmitt-Kopplin, P. (2015). Integrating analytical resolutions in non-targeted wine metabolomics. Tetrahedron, 71(20), 2983–2990.

    CAS  Google Scholar 

  • Schmidtke, L. M., Blackman, J. W., Clark, A. C., & Grant-Preece, P. (2013). Wine metabolomics: Objective measures of sensory properties of semillon from GC-MS profiles. Journal of Agricultural and Food Chemistry, 61(49), 11957–11967.

    CAS  PubMed  Google Scholar 

  • Scollary, G. R. (2016) Grapevine: Wine metabolomics—what’s in a name?. Chemistry in Australia, 37. Retrieved Feb 2016, from https://search.informit.com.au/documentSummary;dn=754490402137104;res=IELENG.

  • Son, H., Hwang, G., Kim, K. M., Kim, E., Van Den Berg, F., Park, W., et al. (2009a). H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains, 81(3), 1137–1145.

  • Son, H. S., Hwang, G. S., Park, W. M., Hong, Y. S., & Lee, C. H. (2009b). Metabolomic characterization of malolactic fermentation and fermentative behaviors of wine yeasts in grape wine. Journal of Agricultural and Food Chemistry, 57(11), 4801–4809.

    CAS  PubMed  Google Scholar 

  • Son, H.-S., Hwang, G.-S., Kim, K. M., Ahn, H.-J., Park, W.-M., Van Den Berg, F., et al. (2009c). Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. Journal of Agricultural and Food Chemistry, 57(4), 1481–1490.

    CAS  PubMed  Google Scholar 

  • Son, H.-S., Kim, K. M., van der Berg, F., Hwang, G. S., Park, W. M., Lee, C. H., et al (2008). 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and Korea Cabernet Sauvignon 2005. Journal of Agricultural and Food Chemistry, 56, 8007–8016.

    CAS  PubMed  Google Scholar 

  • Springer, A. E., Riedl, J., Esslinger, S., Roth, T., Glomb, M. A., & Fauhl-Hassek, C. (2014). Validated modeling for german white wine varietal authentication based on headspace solid-phase microextraction online coupled with gas chromatography mass spectrometry fingerprinting. Journal of Agricultural and Food Chemistry, 62(28), 6844–6851.

    CAS  PubMed  Google Scholar 

  • Sternad Lemut, M., Sivilotti, P., Franceschi, P., Wehrens, R., & Vrhovsek, U. (2013). Use of metabolic profiling to study grape skin polyphenol behavior as a result of canopy microclimate manipulation in a “Pinot noir” vineyard. Journal of Agricultural and Food Chemistry, 61(37), 8976–8986.

    CAS  PubMed  Google Scholar 

  • Theodoridis, G., Gika, H. G., & Wilson, I. D. (2011). Mass spectrometry-based holistic analytical approaches for metabolite profiling in system biology studies. Mass Spectrometry Reviews, 30(5), 884–906.

    CAS  PubMed  Google Scholar 

  • Theodoridis, G. A., Gika, H. G., Want, E. J., & Wilson, I. D. (2012). Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Analytica Chimica Acta, 711, 7–16.

    CAS  PubMed  Google Scholar 

  • ThermoFisherScientific. (2016). An analytical testing digest of the wine manufacturing process. Retrieved Nov 23, 2017, from https://tools.thermofisher.com/content/sfs/brochures/XX-72102-Wine-Analysis-XX72102-EN.pdf.

  • Vaclavik, L., Lacina, O., Hajslova, J., & Zweigenbaum, J. (2011). The use of high performance liquid chromatography–quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety. Analytica Chimica Acta, 685(1), 45–51.

    CAS  PubMed  Google Scholar 

  • Vaclavik, L., Lacina, O., & Zweigenbaum, J. (2011). Metabolomic profiling of wines using LC/QTOF MS and MassHunter data mining and statistical tools application note. Application Note Agilent Food Testing and Agriculture. Retrieved Nov 27, 2017, from http://www.youngin.com/upload/original/2012/7/2/EYYMUUIAAI_20120702153000439.pdf.

  • Varela, C., Sengler, F., Solomon, M., & Curtin, C. (2016). Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chemistry, 209, 57–64.

    CAS  PubMed  Google Scholar 

  • Vestner, J., de Revel, G., Krieger-Weber, S., Rauhut, D., du Toit, M., & de Villiers, A. (2016). Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data. Analytica Chimica Acta, 911, 42–58.

    CAS  PubMed  Google Scholar 

  • Virgiliou, C., Sampsonidis, I., Gika, H. G., Raikos, N., & Theodoridis, G. A. (2015). Development and validation of a HILIC–MS/MS multitargeted method for metabolomics applications. Electrophoresis, 36(18), 2215–2225.

    CAS  PubMed  Google Scholar 

  • Vrhovsek, U., Masuero, D., Gasperotti, M., Franceschi, P., Caputi, L., Viola, R., et al. (2012). A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. Journal of Agricultural and Food Chemistry, 60(36), 8831–8840.

    CAS  PubMed  Google Scholar 

  • Want, E. J., Wilson, I. D., Gika, H., Theodoridis, G., Plumb, R. S., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC–MS. Nature Protocols, 5, 1005. https://doi.org/10.1038/nprot.2010.50.

    Article  CAS  PubMed  Google Scholar 

  • Wehrens, R., Weingart, G., & Mattivi, F. (2014). MetaMS: An open-source pipeline for GC–MS-based untargeted metabolomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 966, 109–116.

    CAS  PubMed  Google Scholar 

  • Wojdyło, A., Samoticha, J., Nowicka, P., & Chmielewska, J. (2018). Characterisation of (poly)phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC–PDA–ESI-MS QTof. Food Chemistry, 239, 94–101.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. S. Kalogiannis for careful reading of the manuscript and useful comments.

Author information

Authors and Affiliations

Authors

Contributions

DD wrote the manuscript. GT and AZ contributed with the literature search and the structure of the manuscript. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Georgios Theodoridis.

Ethics declarations

Conflict of interest

Dimitra Diamantidou, Anastasia Zotou and Georgios Theodoridis declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 164 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diamantidou, D., Zotou, A. & Theodoridis, G. Wine and grape marc spirits metabolomics. Metabolomics 14, 159 (2018). https://doi.org/10.1007/s11306-018-1458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1458-1

Keywords

Navigation