Skip to main content

Advertisement

Log in

Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as a key hydride transfer coenzyme for several oxidoreductases. It is also the substrate for intracellular secondary messenger signalling by CD38 glycohydrolases, DNA repair by poly(adenosine diphosphate ribose) polymerase, and epigenetic regulation of gene expression by a class of histone deacetylase enzymes known as sirtuins. The measurement of NAD+ and its related metabolites (hereafter, the NAD+ metabolome) represents an important indicator of cellular function.

Objectives

A study was performed to develop a sensitive, selective, robust, reproducible, and rapid method for the concurrent quantitative determination of intracellular levels of the NAD+ metabolome in glial and oocyte cell extracts using liquid chromatography coupled to mass spectrometry (LC/MS/MS).

Methods

The metabolites were separated on a versatile amino column using a dual HILIC-RP gradient with heated electrospray (HESI) tandem mass spectrometry detection in mixed polarity multiple reaction monitoring mode.

Results

Quantification of 17 metabolites in the NAD+ metabolome in U251 human astroglioma cells could be achieved. Changes in NAD+ metabolism in U251 cell line, and murine oocytes under different culture conditions were also investigated.

Conclusion

This method can be used as a sensitive profiling tool, tailoring chromatography for metabolites that express significant pathophysiological changes in several disease conditions and is indispensable for targeted analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, S., et al. (2012). The kynurenine pathway in brain tumor pathogenesis. Cancer Research, 72(22), 5649–5657.

    Article  CAS  PubMed  Google Scholar 

  • Adams, S., et al. (2014). Involvement of the kynurenine pathway in human glioma pathophysiology. PLoS ONE, 9(11), e112945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, R. M., et al. (2003). Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science, 302(5653), 2124–2126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajad, S. U., et al. (2006). Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. Journal of Chromatography A, 1125(1), 76–88.

    Article  CAS  PubMed  Google Scholar 

  • Belenky, P., Bogan, K. L., & Brenner, C. (2007). NAD+ metabolism in health and disease. Trends in Biochemical Sciences, 32(1), 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Bieganowski, P., & Brenner, C. (2004). Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell, 117(4), 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Bogan, K. L., & Brenner, C. (2008). Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annual Review of Nutrition, 28, 115–130.

    Article  CAS  PubMed  Google Scholar 

  • Braidy, N., et al. (2011). Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE, 6(4), e19194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braidy, N., et al. (2014). Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence. Biogerontology, 15(2), 177–198.

    Article  CAS  PubMed  Google Scholar 

  • Braidy, N., & Grant, R. (2017). Kynurenine pathway metabolism and neuroinflammatory disease. Neural Regeneration Research, 12(1), 39–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandauer, J., et al. (2013). AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle. Journal of Physiology, 591(20), 5207–5220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brovko, L., Romanova, N. A., & Ugarova, N. N. (1994). Bioluminescent assay of bacterial intracellular AMP, ADP, and ATP with the use of a coimmobilized three-enzyme reagent (adenylate kinase, pyruvate kinase, and firefly luciferase). Analytical Biochemistry, 220(2), 410–414.

    Article  CAS  PubMed  Google Scholar 

  • Canto, C., & Auwerx, J. (2012). Targeting sirtuin 1 to improve metabolism: All you need is NAD(+). Pharmacological Reviews, 64(1), 166–187.

    Article  CAS  PubMed  Google Scholar 

  • Coolen, E. J., et al. (2008). Simultaneous determination of adenosine triphosphate and its metabolites in human whole blood by RP-HPLC and UV-detection. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 864(1–2), 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Cordell, R. L., et al. (2008). Quantitative profiling of nucleotides and related phosphate-containing metabolites in cultured mammalian cells by liquid chromatography tandem electrospray mass spectrometry. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 871(1), 115–124.

    Article  CAS  PubMed  Google Scholar 

  • de Koning, W., & van Dam, K. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204(1), 118–123.

    Article  PubMed  Google Scholar 

  • Dietmair, S., et al. (2010). Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Analytical Biochemistry, 404(2), 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Evans, C., et al. (2010). NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chemical Biology, 10, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, J., et al. (2002). LC/MS analysis of NAD biosynthesis using stable isotope pyridine precursors. Analytical Biochemistry, 306(2), 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Faijes, M., Mars, A. E., & Smid, E. J. (2007). Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microbial Cell Factories, 6, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Formentini, L., Moroni, F., & Chiarugi, A. (2009). Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo. Biochemical Pharmacology, 77(10), 1612–1620.

    Article  CAS  PubMed  Google Scholar 

  • Fouquerel, E., & Sobol, R. W. (2014). ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. DNA Repair, 23, 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Gasser, A., Bruhn, S., & Guse, A. H. (2006). Second messenger function of nicotinic acid adenine dinucleotide phosphate revealed by an improved enzymatic cycling assay. Journal of Biological Chemistry, 281(25), 16906–16913.

    Article  CAS  PubMed  Google Scholar 

  • Giannattasio, S., et al. (2003). Simultaneous determination of purine nucleotides, their metabolites and beta-nicotinamide adenine dinucleotide in cerebellar granule cells by ion-pair high performance liquid chromatography. Brain Research Brain Research Protocols, 10(3), 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Gibon, Y., & Larher, F. (1997). Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Analytical Biochemistry, 251(2), 153–157.

    Article  CAS  PubMed  Google Scholar 

  • Graeff, R., & Lee, H. C. (2002). A novel cycling assay for nicotinic acid-adenine dinucleotide phosphate with nanomolar sensitivity. Biochemical Journal, 367(Pt 1), 163–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graeff, R., & Lee, H. C. (2002). A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. Biochemical Journal, 361(Pt 2), 379–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grob, M. K., et al. (2003). Optimization of cellular nucleotide extraction and sample preparation for nucleotide pool analyses using capillary electrophoresis. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 788(1), 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Guarente, L. (2014). Linking DNA damage, NAD(+)/SIRT1, and aging. Cell Metabolism, 20(5), 706–707.

    Article  CAS  PubMed  Google Scholar 

  • Guo, B., et al. (2014). Monitoring ATP hydrolysis and ATPase inhibitor screening using (1)H NMR. Chemical Communications, 50(81), 12037–12039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigis, M. C., & Sinclair, D. A. (2010). Mammalian sirtuins: Biological insights and disease relevance. Annual Review of Pathological Mechanical Disease, 5, 253–295.

    Article  CAS  Google Scholar 

  • Helenius, M., Jalkanen, S., & Yegutkin, G. (2012). Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(10), 1967–1975.

    Article  CAS  Google Scholar 

  • Ikegami, T., et al. (2008). Separation efficiencies in hydrophilic interaction chromatography. Journal of Chromatography A, 1184(1–2), 474–503.

    Article  CAS  PubMed  Google Scholar 

  • Ipata, P. L., & Pesi, R. (2015). What is the true nitrogenase reaction? A guided approach. Biochemistry and Molecular Biology Education, 43(3), 142–144.

    Article  CAS  PubMed  Google Scholar 

  • Katayama, S., Ae, N., & Nagata, R. (2001). Synthesis of tricyclic indole-2-carboxylic [correction of caboxylic] acids as potent NMDA-glycine antagonists. Journal of Organic Chemistry, 66(10), 3474–3483.

    Article  CAS  PubMed  Google Scholar 

  • Kaulich, M., Qurishi, R., & Muller, C. E. (2003). Extracellular metabolism of nucleotides in neuroblastoma x glioma NG108-15 cells determined by capillary electrophoresis. Cellular and Molecular Neurobiology, 23(3), 349–364.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura, Y., et al. (2010). Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. The Journal of Clinical Investigation, 120(8), 2817–2828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M. Y., et al. (2004). NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell, 119(6), 803–814.

    Article  CAS  PubMed  Google Scholar 

  • Klawitter, J., et al. (2007). Development and validation of an assay for the quantification of 11 nucleotides using LC/LC-electrospray ionization-MS. Analytical Biochemistry, 365(2), 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A. R., et al. (2013). Nicotinamide: a class III HDACi delays in vitro aging of mouse oocytes. Journal of Reproduction and Development, 59(3), 238–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, S. J., & Guarente, L. (2003). Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Current Opinion in Cell Biology, 15(2), 241–246.

    Article  CAS  PubMed  Google Scholar 

  • Long, A., et al. (2017). CD38 knockout mice show significant protection against ischemic brain damage despite high level poly-ADP-ribosylation. Neurochemical Research, 42(1), 283–293.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Bennett, B. D., & Rabinowitz, J. D. (2008). Analytical strategies for LC-MS-based targeted metabolomics. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 871(2), 236–242.

    Article  CAS  PubMed  Google Scholar 

  • Mansson, M. O., Larsson, P. O., & Mosbach, K. (1978). Covalent binding of an NAD analogue to liver alcohol dehydrogenase resulting in an enzyme-coenzyme complex not requiring exogenous coenzyme for activity. European Journal of Biochemistry, 86(2), 455–463.

    Article  CAS  PubMed  Google Scholar 

  • Massudi, H., et al. (2012). Age-associated changes in oxidative stress and NAD + metabolism in human tissue. PLoS ONE, 7(7), e42357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendelsohn, A. R., & Larrick, J. (2017). A NAD+/PARP1/SIRT1 axis in aging. Rejuvenation Research, 20(3), 244–247

    Article  CAS  PubMed  Google Scholar 

  • Moon, P. K., & Minhas, P. S. (2017). Reevaluating the role of IDO1: Examining NAD + metabolism in inflammation. Journal of Neuroimmunology, 307, 31–32.

    Article  CAS  PubMed  Google Scholar 

  • Musiek, E. S., et al. (2016). Nmnat1 protects neuronal function without altering phospho-tau pathology in a mouse model of tauopathy. Annals of Clinical and Translational Neurology, 3(6), 434–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikiforov, A., Kulikova, V., & Ziegler, M. (2015). The human NAD metabolome: Functions, metabolism and compartmentalization. Critical Reviews in Biochemistry and Molecular Biology, 50(4), 284–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabst, M., et al. (2010). Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Analytical Chemistry, 82(23), 9782–9788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palfi, M., et al. (2004). Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography-fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase. Analytical Biochemistry, 326(1), 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Piacente, F., et al. (2017). Nicotinic acid phosphoribosyltransferase regulates cancer cell metabolism, susceptibility to NAMPT inhibitors and DNA repair. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-16-3079.

    PubMed  Google Scholar 

  • Putt, K. S., & Hergenrother, P. J. (2004). An enzymatic assay for poly(ADP-ribose) polymerase-1 (PARP-1) via the chemical quantitation of NAD(+): Application to the high-throughput screening of small molecules as potential inhibitors. Analytical Biochemistry, 326(1), 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Qian, T., Cai, Z., & Yang, M. S. (2004). Determination of adenosine nucleotides in cultured cells by ion-pairing liquid chromatography-electrospray ionization mass spectrometry. Analytical Biochemistry, 325(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Reyes, L. A., et al. (2015). Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart. Proceedings of the National Academy of Sciences USA, 112(37), 11648–11653.

    Article  CAS  Google Scholar 

  • Seifar, R. M., et al. (2009). Simultaneous quantification of free nucleotides in complex biological samples using ion pair reversed phase liquid chromatography isotope dilution tandem mass spectrometry. Analytical Biochemistry, 388(2), 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Trammell, S. A., et al. (2016). Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nature Communications, 7, 12948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trammell, S. A., & Brenner, C. (2013). Targeted, LCMS-based metabolomics for quantitative measurement of NAD(+) metabolites. Computational and Structural Biotechnology Journal, 4, e201301012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viscomi, C., et al. (2011). In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metabolism, 14(1), 80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., et al. (2017) Aldehyde dehydrogenase 1A1 increases NADH levels and promotes tumor growth via glutathione/dihydrolipoic acid-dependent NAD + reduction. Oncotarget, 8(40), 67043–67055.

    PubMed  PubMed Central  Google Scholar 

  • Wang, J., et al. (2009). Analysis of adenosine phosphates in HepG-2 cell by a HPLC-ESI-MS system with porous graphitic carbon as stationary phase. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 877(22), 2019–2024.

    Article  CAS  PubMed  Google Scholar 

  • Weidele, K., Beneke, S., & Burkle, A. (2017). The NAD + precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation. DNA Repair, 52, 12–23.

    Article  CAS  PubMed  Google Scholar 

  • Wilding, M., Marino, M., & Dale, D. (1999). Nicotinamide alters the calcium release pattern and the degradation of MPF activity after fertilisation in ascidian oocytes. Zygote, 7(3), 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Williamson, D. H., Lund, P., & Krebs, H. A. (1967). The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochemical Journal, 103(2), 514–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winder, C. L., et al. (2008). Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites. Analytical Chemistry, 80(8), 2939–2948.

    Article  CAS  PubMed  Google Scholar 

  • Xing, J., et al. (2004). Liquid chromatographic analysis of nucleosides and their mono-, di- and triphosphates using porous graphitic carbon stationary phase coupled with electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 18(14), 1599–1606.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. F., Lu, W., & Rabinowitz, J. D. (2015). Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography-mass spectrometry-based metabolomics. Analytical Chemistry, 87(4), 2273–2281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, K., et al. (2006). The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Analytical Biochemistry, 352(2), 282–285.

    Article  CAS  PubMed  Google Scholar 

  • Yan, E. B., et al. (2015). Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. Journal of Neuroinflammation, 12, 110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, G., et al. (2014). Strategies for quantitation of endogenous adenine nucleotides in human plasma using novel ion-pair hydrophilic interaction chromatography coupled with tandem mass spectrometry. Journal of Chromatography A, 1325, 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Zocchi, E., et al. (1993). A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochemical and Biophysical Research Communications, 196(3), 1459–1465.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mark Wainwright Analytical Centre in conjunction with the Bioanalytical Mass Spectrometry Facility for providing use of the TSQ Vantage bench-top mass spectrometer, analytical grade reagents and data processing software. NB is recipient of the ARC DECRA Fellowship.

Funding

This study was funded by Mark Wainwright Analytical Centre Research Grant (No. 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nady Braidy.

Ethics declarations

Conflict of interest

LW and DS are non-paid directors and shareholders of MetroBiotech NSW Pty Ltd, whose patents concern the use of NAD+ elevating agents to treat disease and are unrelated to nicotinamide (WO2014059034 and Australian provisional patent application number 2013904415). DS is a shareholder and paid consultant to GlaxoSmithKline, a shareholder and scientific advisor to OvaScience, and a shareholder and director to MetroBiotech NSW Pty Ltd and MetroBiotech LLC. None of these interests relate to the present work. The authors confirm that they have no restrictions on the sharing of data or materials related to this work. This does not alter the authors’ adherence to Metabolomics policies on sharing data and materials.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, S., Jayasena, T., Richani, D. et al. Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. Metabolomics 14, 15 (2018). https://doi.org/10.1007/s11306-017-1310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1310-z

Keywords

Navigation