Skip to main content
Log in

Evaluation of quenching and extraction procedures for performing metabolomics in Acidithiobacillus ferrooxidans

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Acidithiobacillus ferrooxidans has a central role in the microbial community metabolism that drives production of acid mine drainage (AMD), a major environmental concern. Metabolomic profiling can offer insight into how At. ferrooxidans contributes to these processes.

Objective

The unique biology of some organisms means that protocols for metabolomic profiling need to be species-specific. Current protocols have largely been optimized for neutrophilic model organisms and, presently, no protocol exists for studying acidophilic extremophiles such as At. ferrooxidans. An appropriate protocol was developed and applied to investigate At. ferrooxidans’ metabolomic capabilities in relation to the colonization of AMD sites.

Methods

We quantified the overall effectiveness of three quenching solutions in combination with three extraction solutions, quantifying the amount of metabolite leakage, number of metabolites extracted and degradation of C13 labeled standards. We then used this method to quantify how the At. ferrooxidans metabolome differed between early and late stages in the logarithmic growth phase to investigate infer how the metabolism of the organism changes as it colonizes the AMD environment.

Results and discussion

An acidic methanol:water based quenching solution with ammonium formate salt used in conjunction with an isopropanol:methanol:water extraction solution produced the smallest amount of leakage, extracted the largest number of metabolites, and was most effective in recovering known standards. When this protocol was applied to the metabolomic fingerprinting of At. ferrooxidans in the beginning and end of its logarithmic growth phase, there was a clear separation in the metabolome at each growth point. Overall, 3% of the metabolome differed significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auld, R. R., Mykytczuk, N. C. S., Leduc, L. G., & Merritt, T. J. S. (2017). Seasonal variation in an acid mine drainage microbial community. Canadian Journal of Microbiology, 63, 137–152.

    Article  CAS  PubMed  Google Scholar 

  • Auld, R. R., Myre, M., Mykytczuk, N. C. S., Leduc, L. G., & Merritt, T. J. S. (2013). Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. Journal of Microbiological Methods, 93(2), 108–115.

    Article  CAS  PubMed  Google Scholar 

  • Baker, B. J., & Banfield, J. F. (2003). Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44(2), 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Birkemeyer, C., Luedemann, A., Wagner, C., Erban, A., & Kopka, J. (2005). Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends in Biotechnology, 23(1), 28–33.

    Article  CAS  PubMed  Google Scholar 

  • Bolten, C. J., & Wittmann, C. (2008). Appropriate sampling for intracellular amino acid analysis in five phylogenetically different yeasts. Biotechnology Letters, 30(11), 1993–2000.

    Article  CAS  PubMed  Google Scholar 

  • Buziol, S., Bashir, I., Baumeister, A., Claaßen, W., Noisommit-Rizzi, N., Mailinger, W., & Reuss, M. (2002). New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnology and Bioengineering, 80(6), 632–636.

    Article  CAS  PubMed  Google Scholar 

  • Canelas, A. B., ten Pierick, A., Ras, C., Seifar, R. M., van Dam, J. C., van Gulik, W. M., & Heijnen, J. J. (2009). Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Analytical Chemistry, 81(17), 7379–7389.

    Article  CAS  PubMed  Google Scholar 

  • Cubbon, S., Antonio, C., Wilson, J., & Thomas-Oates, J. (2010). Metabolomic applications of hilic–lc–ms. Mass Spectrometry Reviews, 29(5), 671–684.

    Article  CAS  PubMed  Google Scholar 

  • de Koning, W., & van Dam, K. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204(1), 118–123.

    Article  PubMed  Google Scholar 

  • Edwards, K. J., Gihring, T. M., & Banfield, J. F. (1999). Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Applied and Environmental Microbiology, 65(8), 3627–3632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faijes, M., Mars, A. E., & Smid, E. J. (2007). Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microbial Cell Factories, 6(1), 1.

    Article  CAS  Google Scholar 

  • Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2(3), 155–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, B., François, J., & Renaud, M. (1997). A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast, 13(14), 1347–1355.

    Article  CAS  PubMed  Google Scholar 

  • Hoque, M. A., Ushiyama, H., Tomita, M., & Shimizu, K. (2005). Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA mutant Escherichia coli against pulse addition of glucose or NH 3 under those limiting continuous cultures. Biochemical Engineering Journal, 26(1), 38–49.

    Article  CAS  Google Scholar 

  • Karamanev, D. G., Nikolov, L. N., & Mamatarkova, V. (2002). Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Minerals Engineering, 15(5), 341–346.

    Article  CAS  Google Scholar 

  • Kelly, D. P., & Wood, A. P. (2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 50(2), 511–516.

    Article  PubMed  Google Scholar 

  • Kim, S., Lee, D. Y., Wohlgemuth, G., Park, H. S., Fiehn, O., & Kim, K. H. (2013). Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Analytical Chemistry, 85(4), 2169–2176.

    Article  CAS  PubMed  Google Scholar 

  • Knee, J. M., Rzezniczak, T. Z., Barsch, A., Guo, K. Z., & Merritt, T. J. (2013). A novel ion pairing LC/MS metabolomics protocol for study of a variety of biologically relevant polar metabolites. Journal of Chromatography B, 936, 63–73.

    Article  CAS  Google Scholar 

  • Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78(4), 1272–1281.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Yin, H., Dai, Y., Dai, Z., Liu, Y., Li, Q., Jiang, H., & Liu, X. (2011). The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO2 fixation. Archives of Microbiology, 193(12), 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Maharjan, R. P., & Ferenci, T. (2003). Global metabolite analysis: The influence of extraction methodology on metabolome profiles of Escherichia coli. Analytical Biochemistry, 313(1), 145–154.

    Article  PubMed  Google Scholar 

  • MEND. (2005). Review of disposal, reprocessing and reuse options for acidic drainage treatment sludge. CANMET, Canada Centre for Mineral and Energy Technology.

  • Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. Macmillan.

  • Oldiges, M., Kunze, M., Degenring, D., Sprenger, G. A., & Takors, R. (2004). Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnology Progress, 20(6), 1623–1633.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16(9), 373–378.

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz, J. D., & Kimball, E. (2007). Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Analytical Chemistry, 79(16), 6167–6173.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer, U., Boos, W., Takors, R., & Weuster-Botz, D. (1999). Automated sampling device for monitoring intracellular metabolite dynamics. Analytical Biochemistry, 270(1), 88–96.

    Article  CAS  PubMed  Google Scholar 

  • Shin, M. H., Lee, D. Y., Liu, K. H., Fiehn, O., & Kim, K. H. (2010). Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Analytical Chemistry, 82(15), 6660–6666.

    Article  CAS  PubMed  Google Scholar 

  • Singer, P. C., & Stumm, W. (1970). Acidic mine drainage: The rate-determining step. Science, 167(3921), 1121–1123.

    Article  CAS  PubMed  Google Scholar 

  • Southam, G., & Beveridge, T. J. (1992). Enumeration of thiobacilli within pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil. Applied and Environmental Microbiology, 58(6), 1904–1912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Southam, G., & Beveridge, T. J. (1993). Examination of lipopolysaccharide (O-antigen) populations of Thiobacillus ferrooxidans from two mine tailings. Applied and Environmental Microbiology, 59(5), 1283–1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spura, J., Reimer, L. C., Wieloch, P., Schreiber, K., Buchinger, S., & Schomburg, D. (2009). A method for enzyme quenching in microbial metabolome analysis successfully applied to Gram-positive and Gram-negative bacteria and yeast. Analytical Biochemistry, 394(2), 192–201.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., & Hankemeier, T. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temple, K. L., & Colmer, A. R. (1951). The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. Journal of Bacteriology, 62(5), 605.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuovinen, O. H., & Kelly, D. P. (1973). Studies on the growth of Thiobacillus ferrooxidans. Archiv für Mikrobiologie, 88(4), 285–298.

    Article  CAS  PubMed  Google Scholar 

  • Tweeddale, H., Notley-McRobb, L., & Ferenci, T. (1998). Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. Journal of Bacteriology, 180(19), 5109–5116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villas-Bôas, S. G., & Bruheim, P. (2007). Cold glycerol–saline: The promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Analytical Biochemistry, 370(1), 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Visser, D., van Zuylen, G. A., van Dam, J. C., Oudshoorn, A., Eman, M. R., Ras, C., van Gulik, W. M., Frank, J., van Dedem, G. W., & Heijnen, J. J. (2002). Rapid sampling for analysis of in vivo kinetics using the BioScope: A system for continuous-pulse experiments. Biotechnology and Bioengineering, 79(6), 674–681.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Xie, Y., Gao, P., Zhang, S., Tan, H., Yang, F., Lian, R., Tian, J., & Xu, G. (2014). A metabolomics-based method for studying the effect of yfcC gene in Escherichia coli on metabolism. Analytical Biochemistry, 451, 48–55.

    Article  CAS  PubMed  Google Scholar 

  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., & Goodacre, R. (2008). Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites. Analytical Chemistry, 80(8), 2939–2948.

    Article  CAS  PubMed  Google Scholar 

  • Wittmann, C., Krömer, J. O., Kiefer, P., Binz, T., & Heinzle, E. (2004). Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Analytical Biochemistry, 327(1), 135–139.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Residues, 40, W127–W133

    Article  CAS  Google Scholar 

  • Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Residues, 37, W652–W660.

    Article  CAS  Google Scholar 

  • Xu, Y. J., Wang, C., Ho, W. E., & Ong, C. N. (2014). Recent developments and applications of metabolomics in microbiological investigations. Trends in Analytical Chemistry, 56, 37–48.

    Article  CAS  Google Scholar 

  • Zaldivar, J., Borges, A., Johansson, B., Smits, H., Villas-Bôas, S., Nielsen, J., & Olsson, L. (2002). Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 59(4–5), 436–442.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Eric Gauthier and Jason Tennessen for reviewing an MSc thesis version of this manuscript.

Funding

This study was funded by Grant 230113 from the Canada Research Chairs Program to Thomas Merritt and a Northern Ontario Heritage Fund Corporation Internship position to Marney Doran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. S. Merritt.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Research involving human and animal participants

No animals or humans were used in this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2017_1298_MOESM1_ESM.tiff

Supplemental Figure 1: The natural logarithm of the ferric iron concentrations versus time as determined by spectrophotometric analysis of iron production when At. ferrooxidans is grown in TK media. The assumption being that the exponential phase of iron production matches the exponential phase of At. ferrooxidans growth (TIFF 24 KB)

Supplemental Figure 2: Mean of technical replicates (n = 3) of the cell supernatant (TIFF 23 KB)

11306_2017_1298_MOESM3_ESM.tiff

Supplemental Figure 3: Mean of technical replicates (n = 3) of cell supernatant and AmFm quenching solution (TIFF 21 KB)

11306_2017_1298_MOESM4_ESM.tiff

Supplemental Figure 4: Mean of the technical replicates (n = 3) of cell supernatant and TK quenching solution (TIFF 20 KB)

11306_2017_1298_MOESM5_ESM.tiff

Supplemental Figure 5: Mean of technical replicates (n = 3) of cell supernatant and physiological saline quenching solution (TIFF 20 KB)

Supplemental Figure 6: Mean of technical replicates (n = 3) of the IMW extraction (TIFF 28 KB)

Supplemental Figure 7: Mean of technical replicates (n = 3) of the CMW extraction (TIFF 26 KB)

Supplemental Figure 8: Mean of technical replicates (n = 3) of the AAW extraction (TIFF 27 KB)

11306_2017_1298_MOESM9_ESM.tiff

Supplemental Figure 9: Mean of technical variation (n = 3) in fourteen 13C labeled standards in three extraction solutions (TIFF 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doran, M.L., Mykytczuk, N., Bieniek, A. et al. Evaluation of quenching and extraction procedures for performing metabolomics in Acidithiobacillus ferrooxidans . Metabolomics 13, 156 (2017). https://doi.org/10.1007/s11306-017-1298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1298-4

Keywords

Navigation