Skip to main content
Log in

ClpXP affects the cell metabolism of Salmonella typhimurium partially in an RpoS-dependent manner

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

ClpXP protease is an important proteolytic system in Salmonella enterica serovar typhimurium (S. typhimurium). Inactivation of ClpXP by deletion of clpP resulted in overproduction of RpoS and a growth defect phenotype. Only one report has indicated that deleting rpoS can restore the growth of a S. typhimurium clpP mutant to the wild-type level. Whether overproduction of RpoS is responsible for the growth deficiency resulting from clpP disruption and how ClpXP affects the cell metabolism of S. typhimurium remain to be elucidated.

Objectives

The aim of this study is to investigate the effect of ClpXP on cell metabolism of S. typhimurium and explore the possible co-effect of RpoS associated with ClpXP in cell metabolism.

Method

We constructed a clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) using a two-step phage transduction technique. We then compared the metabolite fingerprints of Salmonella rpoS deletion mutant TT-14 (ΔrpoS TT-1), clpP deletion mutant TT-16 (ΔclpP TT-1), and clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) with those of the wild-type strain TT-1 by using gas chromatography coupled with mass spectrometry (GC–MS).

Results

Deletion of rpoS recovered only a part of the growth of Salmonella clpP mutant. Further metabolome analysis indicated that clpP disruption changed the levels of 16 extra- and 19 intracellular substances, while the extracellular concentrations of 4 compounds (serine, l-5-oxoproline, l-glutamic acid, and l-tryptophan) and intracellular concentrations of 10 compounds (l-isoleucine, glycine, serine, l-methionine, l-phenylalanine, malic acid, citric acid, urea, putrescine, and 6-hydroxypurine) returned to their wild-type levels when rpoS was also deleted.

Conclusion

ClpXP affects the cell metabolism of S. typhimurium partially in an RpoS-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexopoulos, J. A., Guarne, A., & Ortega, J. (2012). ClpP: A structurally dynamic protease regulated by AAA+ proteins. Journal of Structural Biology, 179, 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Baker, T. A., & Sauer, R. T. (2012). ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochimica et biophysica acta, 1823, 15–28.

    Article  CAS  PubMed  Google Scholar 

  • Bang, I. S., Frye, J. G., McClelland, M., Velayudhan, J., & Fang, F. C. (2005). Alternative sigma factor interactions in Salmonella: Sigma and sigma promote antioxidant defences by enhancing sigma levels. Molecular Microbiology, 56, 811–823.

    Article  CAS  PubMed  Google Scholar 

  • Brickman, T. J., & Armstrong, S. K. (1996). The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: Putrescine is a precursor of alcaligin. Journal of bacteriology, 178, 54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevance, F. F., & Hughes, K. T. (2008). Coordinating assembly of a bacterial macromolecular machine. Nature Reviews Microbiology, 6, 455–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damerau, K., & St John, A. C. (1993). Role of Clp protease subunits in degradation of carbon starvation proteins in Escherichia coli. Journal of Bacteriology, 175, 53–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bruijn, I., & Raaijmakers, J. M. (2009). Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease. Journal of Bacteriology, 191, 1910–1923.

    Article  CAS  PubMed  Google Scholar 

  • Efiuvwevwere, B., Gorris, L., Smid, E., & Kets, E. (1999). Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Applied Microbiology and Biotechnology, 51, 100–104.

    Article  CAS  Google Scholar 

  • Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J., & Guiney, D. G. (1992). The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proceedings of the National Academy of Sciences, 89, 11978–11982.

    Article  CAS  Google Scholar 

  • Foster, J. W. (2004). Escherichia coli acid resistance: Tales of an amateur acidophile. Nature Reviews Microbiology, 2, 898–907.

    Article  CAS  PubMed  Google Scholar 

  • Frees, D., Qazi, S. N., Hill, P. J., & Ingmer, H. (2003). Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Molecular Microbiology, 48, 1565–1578.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, S. (2003). Proteolysis in bacterial regulatory circuits 1. Annual Review of Cell and Developmental Biology, 19, 565–587.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, S. I., & Lin, E. (1965). Product induction of glycerol kinase in Escherichia coli. Journal of Molecular Biology, 14, 515IN16-521.

    Article  Google Scholar 

  • Heller, K. B., Lin, E. C., & Wilson, T. H. (1980). Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. Journal of Bacteriology, 144, 274–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel, J., Selbig, J., Walther, D., & Kopka, J. (2007). The Golm Metabolome Database: A database for GC-MS based metabolite profiling Metabolomics. In J. Nielsen, & M. Jewett (Eds.) Metabolomics (pp. 75–95). Berlin: Springer.

    Chapter  Google Scholar 

  • Jensen, M. Ø., Park, S., Tajkhorshid, E., & Schulten, K. (2002). Energetics of glycerol conduction through aquaglyceroporin GlpF. Proceedings of the National Academy of Sciences, 99, 6731–6736.

    Article  CAS  Google Scholar 

  • Kajfasz, J. K., Abranches, J., & Lemos, J. A. (2011). Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans. Microbiology (Reading, England), 157, 2880–2890.

    Article  CAS  Google Scholar 

  • Kets, E. P., Galinski, E. A., De Wit, M., De Bont, J. A., & Heipieper, H. J. (1996). Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. Journal of Bacteriology, 178, 6665–6670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley, R. A., Msefula, C. L., Thomson, N. R., Kariuki, S., Holt, K. E., Gordon, M. A., et al. (2009). Epidemic multiple drug resistant Salmonella typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Research, 19, 2279–2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein, K., Steinberg, R., Fiethen, B., & Overath, P. (1971). Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. European Journal of Biochemistry, 19, 442–450.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen, G. M., Nielsen, M. B., Thomsen, L. E., Aabo, S., Rychlik, I., & Olsen, J. E. (2014). The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature. BMC Microbiology, 14, 208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen, G. M., Olsen, J. E., Aabo, S., Barrow, P., Rychlik, I., & Thomsen, L. E. (2013). ClpP deletion causes attenuation of Salmonella typhimurium virulence through mis-regulation of RpoS and indirect control of CsrA and the SPI genes. Microbiology (Reading, England), 159, 1497–1509.

    Article  CAS  Google Scholar 

  • Lee, I. S., Lin, J., Hall, H. K., Bearson, B., & Foster, J. W. (1995). The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Molecular Microbiology, 17, 155–167.

    Article  CAS  PubMed  Google Scholar 

  • Lin, E. (1976). Glycerol dissimilation and its regulation in bacteria. Annual Reviews in Microbiology, 30, 535–578.

    Article  CAS  Google Scholar 

  • Maloy, S. R., & Nunn, W. D. (1981). Selection for loss of tetracycline resistance by Escherichia coli. Journal of Bacteriology, 145, 1110–1111.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Gómez, K., Flores, N., Castañeda, H. M., Martínez-Batallar, G., Hernández-Chávez, G., Ramírez, O. T., et al. (2012). New insights into Escherichia coli metabolism: Carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microbial Cell Factories, 11, 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monack, D. M., Raupach, B., Hromockyj, A. E., & Falkow, S. (1996). Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proceedings of the National Academy of Sciences, 93, 9833–9838.

    Article  CAS  Google Scholar 

  • Patten, C. L., Kirchhof, M. G., Schertzberg, M. R., Morton, R. A., & Schellhorn, H. E. (2004). Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Molecular Genetics and Genomics, 272, 580–591.

    Article  CAS  PubMed  Google Scholar 

  • Qian, Z. G., Xia, X. X., & Lee, S. Y. (2009). Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine. Biotechnology and Bioengineering, 104, 651–662.

    CAS  PubMed  Google Scholar 

  • Rahman, M., Hasan, M. R., Oba, T., & Shimizu, K. (2006). Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnology and Bioengineering, 94, 585–595.

    Article  CAS  PubMed  Google Scholar 

  • Richey, D. P., & Lin, E. C. (1972). Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. Journal of Bacteriology, 112, 784–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson, G. T., Ng, W. L., Foley, J., Gilmour, R., & Winkler, M. E. (2002). Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. Journal of Bacteriology, 184, 3508–3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rychlik, I., & Barrow, P. A. (2005). Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection. FEMS Microbiology Reviews, 29, 1021–1040.

    Article  CAS  PubMed  Google Scholar 

  • Salanitro, J. P., & Wegener, W. S. (1971). Growth of Escherichia coli on short-chain fatty acids: Nature of the uptake system. Journal of Bacteriology, 108, 893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanno, Y., Wilson, T. H., & Lin, E. C. (1968). Control of permeation to glycerol in cells of Escherichia coli. Biochemical and Biophysical Research Communications, 32, 344–349.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, J., & Wendisch, V. F. (2011). Biotechnological production of polyamines by bacteria: Recent achievements and future perspectives. Applied Microbiology and Biotechnology, 91, 17–30.

    Article  CAS  PubMed  Google Scholar 

  • Sturgill, G., & Rather, P. N. (2004). Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Molecular Microbiology, 51, 437–446.

    Article  CAS  PubMed  Google Scholar 

  • Tang, T., Gao, Q., Barrow, P., Wang, M., Cheng, A., Jia, R., et al. (2015). Development and evaluation of live attenuated Salmonella vaccines in newly hatched duckings. Vaccine, 33, 5564–5571.

    Article  CAS  PubMed  Google Scholar 

  • Thomsen, L., Olsen, J., Foster, J., & Ingmer, H. (2002). ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium. Microbiology (Reading, England), 148, 2727–2733.

    Article  CAS  Google Scholar 

  • Tomoyasu, T., Ohkishi, T., Ukyo, Y., Tokumitsu, A., Takaya, A., Suzuki, M., et al. (2002). The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 184, 645–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoyasu, T., Takaya, A., Isogai, E., & Yamamoto, T. (2003). Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Molecular Microbiology, 48, 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Li, M., Dong, D., Wang, J., Ren, J., & Otto, M. (2007). Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes and Infection, 9, 1376–1383.

    Article  CAS  PubMed  Google Scholar 

  • Way, J., Davis, M., Morisato, D., Roberts, D., & Kleckner, N. (1984). New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene, 32, 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Webb, C., Moreno, M., Wilmes-Riesenberg, M., Curtiss, R., & Foster, J. W. (1999). Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium. Molecular Microbiology, 34, 112–123.

    Article  CAS  PubMed  Google Scholar 

  • Wisselink, H., Weusthuis, R., Eggink, G., Hugenholtz, J., & Grobben, G. (2002). Mannitol production by lactic acid bacteria: A review. International Dairy Journal, 12, 151–161.

    Article  CAS  Google Scholar 

  • Yamamoto, N., & Droffner, M. L. (1985). Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proceedings of the National Academy of Sciences, 82, 2077–2081.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the China Postdoctoral Science Foundation (No. 2016M602691), Sichuan Science & Technology Department Foundation (No. 2017JY0241), Young Scholar Research Grants of Sichuan University (No. 2016SCU11005) and Natural Science Foundation of China (No. 31570924).

Author information

Authors and Affiliations

Authors

Contributions

TT, QG, FB, XP and CW designed the experiments. BZ, XZ and JX guided the experiments. TT performed the experiments. TT analyzed the data. TT and FB wrote this paper.

Corresponding author

Correspondence to Chuan Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Gao, Q., Lin, H. et al. ClpXP affects the cell metabolism of Salmonella typhimurium partially in an RpoS-dependent manner. Metabolomics 13, 157 (2017). https://doi.org/10.1007/s11306-017-1296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1296-6

Keywords

Navigation