Abeliovich, A., et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.
CAS
Article
PubMed
Google Scholar
Ammann, C., Meier, P., & Merbach, A. (1982). A simple multinuclear NMR thermometer. Journal of Magnetic Resonance, 46, 319–321.
CAS
Google Scholar
Andersen, A. D., Binzer, M., Stenager, E., & Gramsbergen, J. B. (2017). Cerebrospinal fluid biomarkers for Parkinson’s disease—a systematic review. Acta Neurologica Scandinavica, 135, 34–56.
CAS
Article
PubMed
Google Scholar
Baykal, A. T., Jain, M. R., & Li, H. (2008). Aberrant regulation of choline metabolism by mitochondrial electron transport system inhibition in neuroblastoma cells. Metabolomics, 4, 347–356.
CAS
Article
PubMed
PubMed Central
Google Scholar
Beckonert, O., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2, 2692–2703.
CAS
Article
PubMed
Google Scholar
Bender, A., et al. (2008). Creatine improves health and survival of mice. Neurobiology of Aging, 29, 1404–1411.
CAS
Article
PubMed
Google Scholar
Bi, H., Krausz, K. W., Manna, S. K., Li, F., Johnson, C. H., & Gonzalez, F. J. (2013). Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Analytical Bioanalytical Chemistry, 405, 5279–5289.
CAS
Article
PubMed
Google Scholar
Blandini, F., & Greenamyre, J. T. (1998). Prospects of glutamate antagonists in the therapy of Parkinson’s disease. Fundamental & Clinical Pharmacology, 12, 4–12.
CAS
Article
Google Scholar
Bosoi, C. R., & Rose, C. F. (2009). Identifying the direct effects of ammonia on the brain. Metabolic Brain Disease, 24, 95–102.
CAS
Article
PubMed
Google Scholar
Cabin, D. E., et al. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. Journal of Neuroscience, 22, 8797–8807.
CAS
Article
PubMed
Google Scholar
Cannino, G., et al. (2012). Glucose modulates respiratory complex I activity in response to acute mitochondrial dysfunction. Journal of Biological Chemistry, 287, 38729–38740.
CAS
Article
PubMed
Google Scholar
Chen, J., & Herrup, K. (2012). Glutamine acts as a neuroprotectant against DNA damage, beta-amyloid and H2O2-induced stress. PLoS ONE, 7, e33177.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chumakov, I., et al. (2015). Combining two repurposed drugs as a promising approach for Alzheimer’s disease therapy. Scientific Reports, 5, 7608.
CAS
Article
PubMed
PubMed Central
Google Scholar
Danzer, K. M., et al. (2007). Different species of alpha-synuclein oligomers induce calcium influx and seeding. Journal of Neuroscience, 27, 9220–9232.
CAS
Article
PubMed
Google Scholar
Doi, Y., et al. (2009). Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid-beta neurotoxicity in in vitro and in vivo models of Alzheimer’s disease. American Journal of Pathology, 175, 2121–2132.
CAS
Article
PubMed
Google Scholar
Farber, S. A., Slack, B. E., & Blusztajn, J. K. (2000). Acceleration of phosphatidylcholine synthesis and breakdown by inhibitors of mitochondrial function in neuronal cells: A model of the membrane defect of Alzheimer’s disease. FASEB Journal 14, 2198–2206.
CAS
Article
PubMed
Google Scholar
Febrero-Bande, M., & de la Fuente, M. O. (2012). Statistical computing in functional data analysis: The R package fda.usc. Journal of Statistical Software, 51, 1–28.
Article
Google Scholar
Finder, V. H., Vodopivec, I., Nitsch, R. M., & Glockshuber, R. (2010). The recombinant amyloid-β peptide Aβ1–42 aggregates faster and is more neurotoxic than synthetic Aβ1–42. Journal of Molecular Biology, 396, 9–18.
CAS
Article
PubMed
Google Scholar
Goldberg, M. S., & Lansbury, P. T. (2000). Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nature Cell Biology, 2, E115–E119.
Article
CAS
Google Scholar
Gonzalez-Riano, C., Garcia, A., & Barbas, C. (2016). Metabolomics studies in brain tissue: A review. Journal of Pharmaceutical and Biomedical Analysis, 130, 141–168.
CAS
Article
PubMed
Google Scholar
Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews: Molecular Cell Biology 8, 101–112.
CAS
Article
PubMed
Google Scholar
Han, X., et al. (2011). Metabolomics in early Alzheimer’s disease: Identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE 6, e21643.
CAS
Article
PubMed
PubMed Central
Google Scholar
Haupt, C., et al. (2012). Structural basis of β-amyloid-dependent synaptic dysfunctions. Angewandte Chemie International Edition, 51, 1576–1579.
CAS
Article
PubMed
Google Scholar
Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.
Article
CAS
PubMed
Google Scholar
Iwai, A., et al. (1995). The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron, 14, 467– 475.
CAS
Article
Google Scholar
Iwasaki, Y., Ikeda, K., Shiojima, T., & Kinoshita, M. (1992). Increased plasma concentrations of aspartate, glutamate and glycine in Parkinson’s disease. Neuroscience Letters, 145, 175–177.
CAS
Article
PubMed
Google Scholar
Jarrett, J. T., Berger, E. P., & Lansbury, P. T. (1993). The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer’s disease. Biochemistry, 32, 4693–4697.
CAS
Article
PubMed
Google Scholar
Jha, M. K., Jeon, S., & Suk, K. (2012). Pyruvate dehydrogenase kinases in the nervous system: their principal functions in neuronal-glial metabolic interaction and neuro-metabolic Disorders. Current Neuropharmacology, 10, 393–403.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jimenez-Jimenez, F. J., et al. (1998). Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer’s disease. Journal of Neural Transmission, 105, 269–277.
CAS
Article
Google Scholar
Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405.
CAS
Article
PubMed
Google Scholar
Kayed, R., et al. (2004). Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. Journal of Biological Chemistry, 279, 46363–46366.
CAS
Article
PubMed
Google Scholar
Kihara, T., & Shimohama, S. (2004). Alzheimer’s disease and acetylcholine receptors. Acta Neurobiologiae Experimentalis, 64, 99–105.
PubMed
Google Scholar
Kim, E., et al. (2014a). Metabolomic signatures in peripheral blood associated with Alzheimer’s disease amyloid-beta-induced neuroinflammation. Journal of Alzheimer’s Disease, 42, 421–433.
CAS
Article
PubMed
Google Scholar
Kim, H. Y., et al. (2014b). Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer’s disease. Scientific Reports, 4, 7467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein, A. M., Kowall, N. W., & Ferrante, R. J. (1999). Neurotoxicity and oxidative damage of beta amyloid 1–42 versus beta amyloid 1–40 in the mouse cerebral cortex. Annals of New York Academy of Science, 893, 314–320.
CAS
Article
Google Scholar
Klopstock, T., Elstner, M., & Bender, A. (2011). Creatine in mouse models of neurodegeneration and aging. Amino Acids 40, 1297–1303.
CAS
Article
PubMed
Google Scholar
Kohl, S. M., Klein, M. S., Hochrein, J., Oefner, P. J., Spang, R., & Gronwald, W. (2012). State-of-the art data normalization methods improve NMR-based metabolomic analysis. Metabolomics, 8, 146–160.
CAS
Article
PubMed
Google Scholar
Lalande, J., et al. (2014). 1H NMR metabolomic signatures in five brain regions of the AbetaPPswe Tg2576 mouse model of Alzheimer’s disease at four ages. Journal of Alzheimer’s Disease, 39, 121–143.
CAS
Article
PubMed
Google Scholar
Lee, S.-J., Desplats, P., Sigurdson, C., Tsigelny, I., & Masliah, E. (2010). Pathological propagation through cell-to-cell transmission of non-prion protein aggregates in neurodegenerative disorders. Nature Reviews Neurology, 6, 702–706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lei, S., & Powers, R. (2013). NMR metabolomics analysis of Parkinson’s disease. Current Metabolomics, 1, 191–209.
CAS
Article
PubMed
PubMed Central
Google Scholar
Luan, H., et al. (2015). Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Scientific Reports, 5, 13888.
Article
PubMed
PubMed Central
Google Scholar
Madine, J., Wang, X., Brown, D. R., & Middleton, D. A. (2009). Evaluation of beta-alanine- and GABA-substituted peptides as inhibitors of disease-linked protein aggregation. ChemBioChem, 10, 1982–1987.
CAS
Article
PubMed
Google Scholar
Mally, J., Szalai, G., & Stone, T. W. (1997). Changes in the concentration of amino acids in serum and cerebrospinal fluid of patients with Parkinson’s disease. Journal of the Neurological Sciences, 151, 159–162.
CAS
Article
PubMed
Google Scholar
Moriyama, T., et al. (1996). Effects of dietary phosphatidylcholine on memory in memory deficient mice with low brain acetylcholine concentration. Life Sciences, 58, PL111–PL118.
Article
Google Scholar
Murphy, M. P., & LeVine, H. 3rd (2010). Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer’s Disease 19, 311–323.
Article
CAS
PubMed
Google Scholar
Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27, 29–34.
CAS
Article
PubMed
PubMed Central
Google Scholar
Outeiro, T. F., & Lindquist, S. (2003). Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science, 302, 1772–1775.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pákáski, M., & Kálmán, J. (2008). Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochemistry International, 53, 103–111.
Article
CAS
PubMed
Google Scholar
Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F. L., & Zigmond, M. J. (2002). A role for alpha-synuclein in the regulation of dopamine biosynthesis. Journal of Neuroscience, 22, 3090–3099.
CAS
Article
PubMed
Google Scholar
Pomara, N., Singh, R., Deptula, D., Chou, J. C., Schwartz, M. B., & LeWitt, P. A. (1992). Glutamate and other CSF amino acids in Alzheimer’s disease. American Journal of Psychiatry, 149, 251–254.
CAS
Article
PubMed
Google Scholar
Quist, A., et al. (2005). Amyloid ion channels: A common structural link for protein-misfolding disease. Proceedings of National Academy of Science USA 102, 10427–10432.
CAS
Article
Google Scholar
Rosales-Corral, S. A., et al. (2012). Alterations in lipid levels of mitochondrial membranes induced by amyloid-beta; a protective role of melatonin. International Journal of Alzheimer’s Disease, 2012, 459806.
PubMed
PubMed Central
Google Scholar
Selkoe, D. J. (1991). The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498.
CAS
Article
PubMed
Google Scholar
Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.
CAS
Article
PubMed
Google Scholar
Spillantini, L. C., Schmidt, M. L., Lee, V. M. Y., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). α-Synuclein in Lewy bodies. Nature, 388, 839–840.
CAS
Article
PubMed
Google Scholar
Strober, W. (2001). Trypan blue exclusion test of cell viability. Current Protocols in Immunology, Appendix 3, Appendix 3B.
CAS
PubMed
Google Scholar
Wolfe, M. S. (2007). When loss is gain: Reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking point on the role of presenilin mutations in Alzheimer disease. EMBO Reports 8, 136–140.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xia, J., & Wishart, D. S. (2002). Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55, 14
Google Scholar
Xicoy, H., Wieringa, B., & Martens, G. J. M. (2017). The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Molecular Neurodegeneration, 12, 10.
Article
CAS
PubMed
PubMed Central
Google Scholar