Alonso, A., Marsa, S., & Julià, A. (2015). Analytical methods in untargeted metabolomics: State of the Art in 2015. Frontiers in Bioengineering and Biotechnology, 3, 23. doi:10.3389/fbioe.2015.00023.
Article
PubMed
PubMed Central
Google Scholar
Bloemberg, T. G., Gerretzen, J., Wouters, H. J. P., Gloerich, J., van Dael, M., Wessels, H. J. C. T., et al. (2010). Improved parametric time warping for proteomics. Chemometrics and Intelligent Laboratory Systems, 104(1), 65–74.
CAS
Article
Google Scholar
Bornet, A., Maucourt, M., Deborde, C., Jacob, D., Milani, J., Vuichoud, B., et al. (2016). Highly repeatable dissolution dynamic nuclear polarization for heteronuclear NMR metabolomics. Analytical Chemistry, 88(12), 6179–6183.
CAS
Article
PubMed
Google Scholar
Candela, L., Castelli, D., & Pagano, P. (2013). Virtual research environments: An overview and a research agenda. Data Science Journal, 12, GRDI75–GRDI81.
Article
Google Scholar
Cloarec, O., Dumas, M., Craig, A., Barton, R., Trygg, J., Hudson, J., et al. (2005). Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Analytical Chemistry, 77(5), 1282–1289.
CAS
Article
PubMed
Google Scholar
Cruz, T., Balayssac, S., Gilard, V., Martino, R., Vincent, C., Pariente, et al. (2014). 1H NMR analysis of cerebrospinal fluid from Alzheimer’s disease patients: An example of a possible misinterpretation due to non-adjustment of pH. Metabolites, 4(1), 115–128. doi:10.3390/metabo4010115.
Article
PubMed
PubMed Central
Google Scholar
De Meyer, T., Sinnaeve, D., Gasse, B., Tsiporkova, E., Rietzschel, E., De Buyzere, M., et al. (2008). NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Analytical Chemistry, 80(10), 3783–3790.
Article
PubMed
Google Scholar
Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8), 1–18.
Article
Google Scholar
Giacomoni, F., Le Corguillé, G., Monsoor, M., Landi, M., Pericard, P., Pétéra, M., et al. (2015). Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics, 31, 1493–1495.
CAS
Article
PubMed
Google Scholar
Larive, C., Barding, G. Jr., & Dinges, M. (2015). NMR spectroscopy for metabolomics and metabolic profiling. Analytical Chemistry, 205(87), 133–146.
Article
Google Scholar
Moing, A., Maucourt, M., Renaud, C., Gaudillere, M., Brouquisse, R., Lebouteiller, B., Gousset-Dupont, A., Vidal, J., Granot, D., Denoyes-Rothan, B., Lerceteau-Kohler, E., & Rolin, D. (2004). Quantitative metabolic profiling by 1-dimensional H-1-NMR analyses: Application to plant genetics and functional genomics. Functional Plant Biology, 31, 889–902.
CAS
Article
Google Scholar
R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
Ravanbakhsh, S., Liu, P., Bjorndahl, T. C., Mandal, R., Grant, J. R., Wilson, M., Eisner, R., Sinelnikov, I., Hu, X., Luchinat, C., Greiner, R., & Wishart, D. S. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE, 10(5), e0124219.
Article
PubMed
PubMed Central
Google Scholar
Rocca-Serra, P., Salek, R. M., Arita, M., Correa, E., Dayalan, S., Gonzalez-Beltran, A., et al. (2016). Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics, 12, 14. doi:10.1007/s11306-015-0879-3.
Article
PubMed
Google Scholar
Tredwell, G. D., Bundy, J. G., De Iorio, M., & Ebbels, T. M. D. (2016). Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine. Metabolomics, 12, 152. doi:10.1007/s11306-016-1101-y.
Article
PubMed
PubMed Central
Google Scholar
Vu, T. N., & Laukens, K. (2013). Getting your peaks in line: A review of alignment methods for NMR spectral data. Metabolites, 3(2), 259–276.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257.
Article
PubMed
PubMed Central
Google Scholar
Zheng, C., Zhang, S., Ragg, S., Raftery, D., & Vitek, O. (2011) Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics, 27(12):1637–1644. doi:10.1093/bioinformatics/btr118.
Article
Google Scholar