Skip to main content
Log in

Comparative metabolomics of the interaction between rice and the brown planthopper

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The interactions between plants and insect herbivores are complex and multifaceted. Rice and its specialist insect pest the brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae) constitute an ideal system for studying plant–insect interactions.

Objectives

Combined metabolomics analyses of rice plant and BPH were conducted to understand the mechanism of host rice plant defense and BPH insect response.

Methods

Metabolite dynamics in rice leaf sheath and BPH honeydew was investigated using the gas chromatography–mass spectrometry (GC–MS) method. The GC–MS data were analyzed by principal component analysis and partial least squares-discriminant analysis.

Results

Twenty-six metabolites were detected in the leaf sheath extracts. Rice leaf sheath metabolomics analysis results show that BPH feeding induces distinct changes in the metabolite profiles of YHY15 and TN1 plants. These results suggest that BPH infestation enhance fatty acid oxidation, the glyoxylate cycle, gluconeogenesis and the GABA shunt in TN1 plants, and glycolysis and the shikimate pathway in YHY15. We propose that the BPH15 gene mediates a resistance reaction that increases the synthesis of secondary metabolites through the shikimate pathway. Thirty-three metabolites were identified in BPH honeydew. Honeydew metabolomics analysis results show that when BPH insects were fed on resistant YHY15 plants, most of the amino acids in honeydew were significantly decreased compared to those of BPH fed on TN1 plants. Based on metabolomics results, we propose that BPH feeding on resistant YHY15 plants would enhance amino acid absorption. At the same time, urea was significantly increased in BPH fed on YHY15.

Conclusion

Metabolomics study is valuable in understanding the complex and multifaceted interaction between plants and insect herbivores and provide essential clue for development of novel control BPH strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiologia Plantarum, 132(2), 117–135.

    CAS  PubMed  Google Scholar 

  • Arimura, G. I., Kost, C., & Boland, W. (2005). Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1734(2), 91–111.

    Article  CAS  Google Scholar 

  • Baldwin, I. T., & Callahan, P. (1993). Autotoxicity and chemical defense: Nicotine accumulation and carbon gain in solanaceous plants. Oecologia, 94(4), 534–541.

    Article  Google Scholar 

  • Bennett, R. N., & Wallsgrove, R. M. (1994). Tansley Review No. 72. Secondary metabolites in plant defence mechanisms. New Phytologist, 127(72), 617–633.

    Article  CAS  Google Scholar 

  • Bjerrum, J. T. (2015). Metabonomics. New York: Springer.

    Book  Google Scholar 

  • Bolton, M. D. (2009). Primary metabolism and plant defense—Fuel for the fire. Molecular Plant–Microbe Interactions, 22(5), 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Bolton, M. D., Kolmer, J. A., Xu, W. W., & Garvin, D. F. (2008). Lr34-mediated leaf rust resistance in wheat: Transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Molecular Plant–Microbe Interactions, 21(12), 1515–1527.

    Article  CAS  PubMed  Google Scholar 

  • Bouche, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9(3), 110–115.

    Article  CAS  PubMed  Google Scholar 

  • Bouché, N., Lacombe, B., & Fromm, H. (2003). GABA signaling: A conserved and ubiquitous mechanism. Trends in Cell Biology, 13(12), 607–610.

    Article  PubMed  Google Scholar 

  • Bown, A. W., MacGregor, K. B., & Shelp, B. J. (2006). Gamma-aminobutyrate: Defense against invertebrate pests? Trends in Plant Science, 11(9), 424–427.

    Article  CAS  PubMed  Google Scholar 

  • Brar, D. S., Virk, P. S., Jena, K. K., & Khush, G. S. (2009). Breeding for resistance to planthoppers in rice. In K. L. Heong & B. Hardy (Eds.), Planthoppers: New threats to the sustainability of intensive rice production systems in Asia (pp. 401–427). Los Baños, Philippines: Int. Rice Res. Inst.

    Google Scholar 

  • Chen, W., Gao, Y., Xie, W., Gong, L., Lu, K., Wang, W., et al. (2014). Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 46(7), 714–721.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X., Zhu, L., & He, G. (2013). Towards understanding of molecular interactions between rice and the brown planthopper. Molecular Plant, 6(3), 621–634.

    Article  CAS  PubMed  Google Scholar 

  • Claridge, M. F., & Hollander, J. D. (1980). The “biotypes” of the rice brown planthopper, Nilaparvata lugens. Entomologia experimentalis et applicata, 27(1), 23–30.

    Article  Google Scholar 

  • Cochran, D. G. (1975). Excretion in insects. In D. J. Candy & B. A. Kilby (Eds.), Insect biochemistry and function (pp. 177–281). New York: Chapman Hall.

    Google Scholar 

  • Cochran, D. G. (1985). Nitrogen excretion in cockroaches. Annual Review of Entomology, 30(1), 29–49.

    Article  CAS  Google Scholar 

  • Cots, J., Fargeix, C., Gindro, K., & Widmer, F. (2002). Pathogenic attack and carbon reallocation in soybean leaves (Glycine max L.): Reinitiation of the glyoxylate cycle as a defence reaction. Journal of Plant Physiology, 159(1), 91–96.

    Article  CAS  Google Scholar 

  • Du, B., Wei, Z., Wang, Z., Wang, X., Peng, X., Du, B., et al. (2015). Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice. Journal of Plant Physiology, 183, 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., et al. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences of USA, 106(52), 22163–22168.

    Article  CAS  Google Scholar 

  • Esquivel, C. J., Cassone, B. J., & Piermarini, P. M. (2014). Transcriptomic evidence for a dramatic functional transition of the malpighian tubules after a blood meal in the Asian tiger mosquito Aedes albopictus. PLoS Neglected Tropical Diseases, 8(6), e2929.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gut, H., Dominici, P., Pilati, S., Astegno, A., Petoukhov, M. V., Svergun, D. I., et al. (2009). A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. Journal of Molecular Biology, 392(2), 334–351.

    Article  CAS  PubMed  Google Scholar 

  • Heil, M., Hilpert, A., Kaiser, W., & Linsenmair, K. E. (2000). Reduced growth and seed set following chemical induction of pathogen defence: Does systemic acquired resistance (SAR) incur allocation costs? Journal of Ecology, 88(4), 645–654.

    Article  CAS  Google Scholar 

  • Herrmann, K. M. (1995). The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiology, 107(1), 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horgan, F. (2009). Mechanisms of resistance: A major gap in understanding planthopper–rice interactions. In K. L. Heong & B. Hardy (Eds.), Planthoppers: New threats to the sustainability of intensive rice production systems in Asia (pp. 281–302). Los Baños, Philippines: Int. Rice Res. Inst.

    Google Scholar 

  • Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5(1), 150–161.

    Article  CAS  Google Scholar 

  • Jena, K. K., & Kim, S. M. (2010). Current status of brown planthopper (BPH) resistance and genetics. Rice, 3(2–3), 161–171.

    Article  Google Scholar 

  • Jing, S., Liu, B., Peng, L., Peng, X., Zhu, L., Fu, Q., et al. (2012). Development and use of EST-SSR markers for assessing genetic diversity in the brown planthopper (Nilaparvata lugens Stål). Bulletin of Entomological Research, 102(01), 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, H., Heinzel, N., Schöttner, M., Baldwin, I. T., & Gális, I. (2010). R2R3-NaMYB8 regulates the accumulation of phenylpropanoid–polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiology, 152(3), 1731–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports, 21(9), 829–837.

    CAS  PubMed  Google Scholar 

  • Kinnersley, A. M., & Turano, F. J. (2000). Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19(6), 479–509.

    Article  CAS  Google Scholar 

  • Leiss, K. A., Choi, Y. H., Abdel-Farid, I. B., Verpoorte, R., & Klinkhamer, P. G. (2009). NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids. Journal of Chemical Ecology, 35(2), 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1(1), 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Hao, F., Hu, J., Zhang, W., Wan, L., Zhu, L., et al. (2010). Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis. Journal of Proteome Research, 9(12), 6774–6785.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wu, H., Chen, H., Liu, Y., He, J., Kang, H., et al. (2015). A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature Biotechnology, 33(3), 301–305.

    Article  CAS  PubMed  Google Scholar 

  • Luo, J., Fuell, C., Parr, A., Hill, L., Bailey, P., Elliott, K., et al. (2009). A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. The Plant Cell, 21(1), 318–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, W., Du, B., Shangguan, X., Zhao, Y., Pan, Y., Zhu, L., et al. (2014). BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genomics, 15(1), 674.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda, H., & Dudareva, N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63, 73–105.

    Article  CAS  PubMed  Google Scholar 

  • Narayan, V. S., & Nair, P. M. (1990). Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry, 29(2), 367–375.

    Article  CAS  Google Scholar 

  • Nicholson, J. K., & Lindon, J. C. (2008). Systems biology: Metabonomics. Nature, 455(7216), 1054–1056.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). Metabonomics. Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Paré, P. W., & Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology, 121(2), 325–332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113–116.

    Article  CAS  PubMed  Google Scholar 

  • Qi, X., Chen, X., & Wang, Y. (2015). Plant metabolomics: Methods and applications (pp. 25–44). Netherlands: Springer.

    Google Scholar 

  • Riach, A. C., Perera, M. V. L., Florance, H. V., Penfield, S. D., & Hill, J. K. (2015). Analysis of plant leaf metabolites reveals no common response to insect herbivory by Pieris rapae in three related host–plant species. Journal of Experimental Botany, 66(9), 2547–2556.

    Article  CAS  PubMed  Google Scholar 

  • Scaraffia, P. Y., Isoe, J., Murillo, A., & Wells, M. A. (2005). Ammonia metabolism in Aedes aegypti. Insect Biochemistry and Molecular Biology, 35(5), 491–503.

    Article  CAS  PubMed  Google Scholar 

  • Scaraffia, P. Y., Tan, G., Isoe, J., Wysocki, V. H., Wells, M. A., & Miesfeld, R. L. (2008). Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences of USA, 105(2), 518–523.

    Article  CAS  Google Scholar 

  • Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiology, 132(2), 999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwachtje, J., & Baldwin, I. T. (2008). Why does herbivore attack reconfigure primary metabolism? Plant Physiology, 146(3), 845–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartzberg, E. G., & Tumlinson, J. H. (2014). Aphid honeydew alters plant defence responses. Functional Ecology, 28(2), 386–394.

    Article  Google Scholar 

  • Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion in Plant Biology, 6(4), 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Shelp, B. J., Mullen, R. T., & Waller, J. C. (2012). Compartmentation of GABA metabolism raises intriguing questions. Trends in Plant Science, 17(2), 57–59.

    Article  CAS  PubMed  Google Scholar 

  • Skopelitis, D. S., Paranychianakis, N. V., Paschalidis, K. A., Pliakonis, E. D., Delis, I. D., Yakoumakis, D. I., et al. (2006). Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell, 18(10), 2767–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smedegaard-Petersen, V., & Tolstrup, K. (1985). The limiting effect of disease resistance on yield. Annual review of Phytopathology, 23(1), 475–490.

    Article  Google Scholar 

  • Sōgawa, K. (1970). Studies on the feeding habits of the brown planthopper. II. Honeydew excretion. Japanese Journal of Applied Entomology and Zoology, 14(3), 134–139.

    Article  Google Scholar 

  • Sōgawa, K. (1982). The rice brown planthopper: Feeding physiology and host plant interactions. Annual Review of Entomology, 27(1), 49–73.

    Article  Google Scholar 

  • Sōgawa, K., & Pathak, M. D. (1970). Mechanisms of brown planthopper resistance in Mudgo variety of rice (Hemiptera: Delphacidae). Applied Entomology and Zoology, 5(3), 145–158.

    Google Scholar 

  • Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., et al. (2014). Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific Reports, 4, 5872–5879.

    PubMed  Google Scholar 

  • Tang, M., Lv, L., Jing, S., Zhu, L., & He, G. (2010). Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Applied and Environmental Microbiology, 76(6), 1740–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uawisetwathana, U., Graham, S. F., Kamolsukyunyong, W., Sukhaket, W., Klanchui, A., Toojinda, T., et al. (2015). Quantitative 1H NMR metabolome profiling of Thai Jasmine rice (Oryza sativa) reveals primary metabolic response during brown planthopper infestation. Metabolomics, 11(6), 1640–1655.

    Article  CAS  Google Scholar 

  • Wang, Y., Cao, L., Zhang, Y., Cao, C., Liu, F., Huang, F., et al. (2015). Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. Journal of Experimental Botany, 66(19), 6035–6045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver, L. M., & Herrmann, K. M. (1997). Dynamics of the shikimate pathway in plants. Trends in Plant Science, 2(9), 346–351.

    Article  Google Scholar 

  • Wei, Z., Hu, W., Lin, Q., Cheng, X., Tong, M., Zhu, L., et al. (2009). Understanding rice plant resistance to the brown planthopper (Nilaparvata lugens): A proteomic approach. Proteomics, 9(10), 2798–2808.

    Article  CAS  PubMed  Google Scholar 

  • Wright, P. A. (1995). Nitrogen excretion: Three end products, many physiological roles. The Journal of Experimental Biology, 198(2), 273–281.

    CAS  PubMed  Google Scholar 

  • Xue, J., Zhou, X., Zhang, C. X., Yu, L. L., Fan, H. W., Wang, Z., et al. (2014). Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology, 15(12), 521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, H., You, A., Yang, Z., Zhang, F., He, R., Zhu, L., et al. (2004). High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L.). Theoretical and Applied Genetics, 110(1), 182–191.

    Article  CAS  PubMed  Google Scholar 

  • Zangerl, A. R., Arntz, A. M., & Berenbaum, M. R. (1997). Physiological price of an induced chemical defense: Photosynthesis, respiration, biosynthesis, and growth. Oecologia, 109(3), 433–441.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the State Key Development Program for Basic Research of China (Grant No. 2013CBA01400) and the National Natural Science Foundation of China (Grant No. 31230060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcun He.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Human and animal rights informed consent

This article does not contain any data related to human or animal studies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4436 kb)

Supplementary material 2 (XLS 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Zhao, Y., Wang, H. et al. Comparative metabolomics of the interaction between rice and the brown planthopper. Metabolomics 12, 132 (2016). https://doi.org/10.1007/s11306-016-1077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1077-7

Keywords

Navigation