Advertisement

Metabolomics

, Volume 10, Issue 5, pp 816–832 | Cite as

The influence of storage on the “chemical age” of red wines

  • Panagiotis Arapitsas
  • Giuseppe Speri
  • Andrea Angeli
  • Daniele Perenzoni
  • Fulvio MattiviEmail author
Original Article

Abstract

Storage conditions and duration have a considerable influence on wine quality. Optimum temperature and humidity conditions may improve wine quality through ageing, while incorrect or excessively long storage leads to negative results. In order to evaluate the global effects of storage on red wine composition, 20 Sangiovese wines were stored in two different conditions (cellar or house) for a period of 2 years and analysed every 6 months. Untargeted LC–MS analysis showed various putative markers for the type and length of conservation (i.e. pigments, flavanols, pantothenic acid etc.), while targeted LC–MS confirmed and expanded these results within specific metabolic groups. The results of multivariate analysis showed that wines stored in the cellar changed little even after 2 years of storage, while wines stored in typical domestic conditions (house) developed approximately four times faster, reaching a composition similar to wines stored in the cellar for 2 years after just 6 months. The formation of several monosulfonated flavanols during domestic ageing provided the first evidence in wine of a reaction between wine tannins—both catechins and proanthocyanidins—and the exogenous antioxidant bisulfite. Moreover, ageing in domestic conditions appeared to induce an accelerated decrease in wine pigments, while specifically promoting the formation of pinotin A-like pigments and the hydrolysis of flavonol glycosides.

Keywords

Sangiovese Profiling Conservation Hydrolysis Sulfonation Vitis vinifera UPLC–QTOF MS 

Notes

Acknowledgments

The authors thank the Consortium di Montalcino for providing the grapes, Tomas Roman for small scale winemaking, Mario Malacarne for basic oenological analysis, Pietro Franceschi for his useful comments and the winery of the Fondazione Edmund Mach for the cellar storage experiment. To the project: QUALIFU – Qualità alimentare e funzionale, D.M. 2087/7303/09 of 28/01/2009, for financial support.

Conflict of interest

The authors have no conflict of interest to declare in submitting this manuscript.

Supplementary material

11306_2014_638_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 46 kb)
11306_2014_638_MOESM2_ESM.xls (46 kb)
Supplementary material 2 (XLS 46 kb)
11306_2014_638_MOESM3_ESM.doc (1.4 mb)
Supplementary material 3 (DOC 1412 kb)
11306_2014_638_MOESM4_ESM.xls (18 kb)
Supplementary material 4 (XLS 18 kb)
11306_2014_638_MOESM5_ESM.xls (67 kb)
Supplementary material 5 (XLS 67 kb)
11306_2014_638_MOESM6_ESM.xls (412 kb)
Supplementary material 6 (XLS 412 kb)
11306_2014_638_MOESM7_ESM.doc (186 kb)
Supplementary material 7 (DOC 187 kb)
11306_2014_638_MOESM8_ESM.xls (34 kb)
Supplementary material 8 (XLS 35 kb)
11306_2014_638_MOESM9_ESM.xls (58 kb)
Supplementary material 9 (XLS 58 kb)
11306_2014_638_MOESM10_ESM.xls (191 kb)
Supplementary material 10 (XLS 191 kb)
11306_2014_638_MOESM11_ESM.xls (86 kb)
Supplementary material 11 (XLS 87 kb)

References

  1. Arapitsas, P., Perenzoni, D., Nicolini, G., & Mattivi, F. (2012a). Study of Sangiovese wines pigment profile by UHPLC-MS/MS. Journal of Agricultural and Food Chemistry, 60(42), 10461–10471.CrossRefPubMedGoogle Scholar
  2. Arapitsas, P., Scholz, M., Vrhovsek, U., et al. (2012b). A metabolomic approach to the study of wine micro-oxygenation. PLoS One, 7(5), e37783.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bae, Y. (1989). Douglas-fir inner bark procyanidins: Sulfonation, isolation and characterization. Oregon State University PhD Thesis. http://ir.library.oregonstate.edu/xmlui/handle/1957/18120?show=full.
  4. Burin, V. M., Costa, L. L. F., Rosier, J. P., & Bordignon-Luiz, M. T. (2011). Cabernet Sauvignon wines from two different clones, characterization and evolution during bottle ageing. LWT: Food Science and Technology, 44(9), 1931–1938.CrossRefGoogle Scholar
  5. Cejudo-Bastante, M. J., Hermosín-Gutiérrez, I., & Pérez-Coello, M. S. (2013). Accelerated aging against conventional storage: Effects on the volatile composition of chardonnay white wines. Journal of Food Science, 78(4), C507–C513.CrossRefPubMedGoogle Scholar
  6. Cheynier, V. (2012). Phenolic compounds: From plants to foods. Phytochemistry Reviews, 11(2–3), 153–177.CrossRefGoogle Scholar
  7. Cliff, M. A., King, M. C., & Schlosser, J. (2007). Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Research International, 40(1), 92–100.CrossRefGoogle Scholar
  8. Cuadros-Inostroza, A., Giavalisco, P., Hummel, J., Eckardt, A., Willmitzer, L., & Peña-Cortés, H. (2010). Discrimination of wine attributes by metabolome analysis. Analytical Chemistry, 82(9), 3573–3580.CrossRefPubMedGoogle Scholar
  9. Figueiredo-González, M., Cancho-Grande, B., & Simal-Gándara, J. (2013). Garnacha Tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV–Vis spectrophotometry. Food Chemistry, 140(1–2), 217–224.CrossRefPubMedGoogle Scholar
  10. Foo, L. Y., McGraw, G. W., & Hemingway, R. W. (1983). Condensed tannins: Preferential substitution at the interflavanoid bond by sulfite ion. Journal of Chemical Society, Chemical Communications, 672–673.Google Scholar
  11. Fresco, P., Borges, F., Diniz, C., & Marques, M. P. M. (2006). New insights on the anticancer properties of dietary polyphenols. Medicinal Research Reviews, 26(6), 747–766.CrossRefPubMedGoogle Scholar
  12. Fulcrand, H., Mané, C., Preys, S., et al. (2008). Direct mass spectrometry approaches to characterize polyphenol composition of complex samples. Phytochemistry, 69(18), 3131–3138.CrossRefPubMedGoogle Scholar
  13. Ghidossi, R., Poupot, C., Thibon, C., et al. (2012). The influence of packaging on wine conservation. Food Control, 23(2), 302–311.CrossRefGoogle Scholar
  14. González Marco, A., & Ancín Azpilicueta, C. (2006). Amine concentrations in wine stored in bottles at different temperatures. Food Chemistry, 99(4), 680–685.CrossRefGoogle Scholar
  15. Gougeon, R. D., Lucio, M., Frommberger, M., et al. (2009). The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proceedings of the National Academy of Sciences of the USA, 106(23), 9174–9179.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Håkansson, A. E., Pardon, K., Hayasaka, Y., De Sa, M., & Herderich, M. (2003). Structures and colour properties of new red wine pigments. Tetrahedron Letters, 44(26), 4887–4891.CrossRefGoogle Scholar
  17. Haug, K., Salek, R. M., Conesa, P., et al. (2013). MetaboLights: An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 41(Database issue), D781–D786. doi: 10.1093/nar/gks1004.CrossRefPubMedGoogle Scholar
  18. Hernanz, D., Gallo, V., Recamales, Á. F., Meléndez-Martínez, A. J., González-Miret, M. L., & Heredia, F. J. (2009). Effect of storage on the phenolic content, volatile composition and colour of white wines from the varieties Zalema and Colombard. Food Chemistry, 113(2), 530–537.CrossRefGoogle Scholar
  19. Hopfer, H., Ebeler, S. E., & Heymann, H. (2012). The combined effects of storage temperature and packaging type on the sensory and chemical properties of chardonnay. Journal of Agricultural and Food Chemistry, 60(43), 10743–10754.CrossRefPubMedGoogle Scholar
  20. Kallithraka, S., Salacha, M. I., & Tzourou, I. (2009). Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chemistry, 113(2), 500–505.CrossRefGoogle Scholar
  21. Kwiatkowski, M. J., Skouroumounis, G. K., Lattey, K. A., & Waters, E. J. (2007). The impact of closures, including screw cap with three different headspace volumes, on the composition, colour and sensory properties of a Cabernet Sauvignon wine during two years’ storage. Australian Journal of Grape and Wine Research, 13(2), 81–94.CrossRefGoogle Scholar
  22. Landete, J. M., Ferrer, S., Polo, L., & Pardo, I. (2005). Biogenic amines in wines from three Spanish regions. Journal of Agricultural and Food Chemistry, 53(4), 1119–1124.CrossRefPubMedGoogle Scholar
  23. Laurie, V. F., Zúñiga, M. C., Carrasco-Sánchez, V., et al. (2012). Reactivity of 3-sulfanyl-1-hexanol and catechol-containing phenolics in vitro. Food Chemistry, 131(4), 1510–1516.CrossRefGoogle Scholar
  24. Leopoldini, M., Rondinelli, F., Russo, N., & Toscano, M. (2010). Pyranoanthocyanins: A theoretical investigation on their antioxidant activity. Journal of Agricultural and Food Chemistry, 58(15), 8862–8871.CrossRefPubMedGoogle Scholar
  25. Loscos, N., Hernández-Orte, P., Cacho, J., & Ferreira, V. (2010). Evolution of the aroma composition of wines supplemented with grape flavour precursors from different varietals during accelerated wine ageing. Food Chemistry, 120(1), 205–216.CrossRefGoogle Scholar
  26. Makhotkina, O., & Kilmartin, P. A. (2012). Hydrolysis and formation of volatile esters in New Zealand Sauvignon Blanc wine. Food Chemistry, 135(2), 486–493.CrossRefPubMedGoogle Scholar
  27. Makhotkina, O., Pineau, B., & Kilmartin, P. A. (2012). Effect of storage temperature on the chemical composition and sensory profile of Sauvignon Blanc wines. Australian Journal of Grape and Wine Research, 18(1), 91–99.CrossRefGoogle Scholar
  28. Mateus, N., Oliveira, J., Santos-Buelga, C., Silva, A. M. S., & De Freitas, V. (2004). NMR structure characterization of a new vinylpyranoanthocyanin–catechin pigment (a portisin). Tetrahedron Letters, 45(17), 3455–3457.CrossRefGoogle Scholar
  29. Maury, C., Clark, A. C., & Scollary, G. R. (2010). Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions. Analytica Chimica Acta, 660(1–2), 81–86.CrossRefPubMedGoogle Scholar
  30. Monagas, M., Bartolomé, B., & Gomez-Cordovés, C. (2005). Evolution of polyphenols in red wines from Vitis vinifera L. during aging in the bottle. European Food Research and Technology, 220(3–4), 331–340.CrossRefGoogle Scholar
  31. Nassiri-Asl, M., & Hosseinzadeh, H. (2009). Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytotherapy Research, 23(9), 1197–1204.CrossRefPubMedGoogle Scholar
  32. Patti, G. J., Tautenhahn, R., & Siuzdak, G. (2012). Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nature Protocols, 7(3), 508–516.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sanchez-Ilarduya, M. B., Sanchez-Fernandez, C., Viloria-Bernal, M., et al. (2012). Mass spectrometry fragmentation pattern of coloured flavanol–anthocyanin and anthocyanin–flavanol derivatives in aged red wines of Rioja. Australian Journal of Grape and Wine Research, 18(2), 203–214.CrossRefGoogle Scholar
  34. Saucier, C. (2010). How do wine polyphenols evolve during wine ageing? Cerevisia, 35(1), 11–15.CrossRefGoogle Scholar
  35. Shahaf, N., Franceschi, P., Arapitsas, P., et al. (2013). Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics. Rapid Communications in Mass Spectrometry, 27(21), 2425–2431.CrossRefPubMedGoogle Scholar
  36. Sun, B., Neves, A. C., Fernandes, T. A., et al. (2011). Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. Journal of Agricultural and Food Chemistry, 59(12), 6550–6557.CrossRefPubMedGoogle Scholar
  37. Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tautenhahn, R., Patti, G. J., Kalisiak, E., et al. (2010). metaXCMS: Second-order analysis of untargeted metabolomics data. Analytical Chemistry, 83(3), 696–700.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Theodoridis, G., Gika, H., Franceschi, P., et al. (2012). LC–MS based global metabolite profiling of grapes: Solvent extraction protocol optimization. Metabolomics, 8(2), 175–185.CrossRefGoogle Scholar
  40. Ugliano, M. (2013). Oxygen contribution to wine aroma evolution during bottle aging. Journal of Agricultural and Food Chemistry, 61(26), 6125–6136.CrossRefPubMedGoogle Scholar
  41. Villamor, R. R., Harbertson, J. F., & Ross, C. F. (2009). Influence of tannin concentration, storage temperature, and time on chemical and sensory properties of cabernet sauvignon and merlot wines. American Journal of Enology and Viticulture, 60(4), 442–449.Google Scholar
  42. Vrhovsek, U., Masuero, D., Gasperotti, M., et al. (2012). A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. Journal of Agricultural and Food Chemistry, 60(36), 8831–8840.CrossRefPubMedGoogle Scholar
  43. Wang, J. (2012). Natural compounds as anticancer agents: Experimental evidence. World Journal of Experimental Medicine, 2(3), 45.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wirth, J., Caillé, S., Souquet, J. M., et al. (2012). Impact of post-bottling oxygen exposure on the sensory characteristics and phenolic composition of Grenache rosé wines. Food Chemistry, 132(4), 1861–1871.CrossRefGoogle Scholar
  45. Wirth, J., Morel-Salmi, C., Souquet, J. M., et al. (2010). The impact of oxygen exposure before and after bottling on the polyphenolic composition of red wines. Food Chemistry, 123(1), 107–116.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Panagiotis Arapitsas
    • 1
  • Giuseppe Speri
    • 1
  • Andrea Angeli
    • 1
  • Daniele Perenzoni
    • 1
  • Fulvio Mattivi
    • 1
    Email author
  1. 1.Food Quality and Nutrition Department, Research and Innovation CentreFondazione Edmund MachSan Michele all’AdigeItaly

Personalised recommendations