Skip to main content
Log in

Stable isotope resolved metabolomics analysis of ribonucleotide and RNA metabolism in human lung cancer cells

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

We have developed a simple NMR-based method to determine the turnover of nucleotides and incorporation into RNA by stable isotope resolved metabolomics (SIRM) in A549 lung cancer cells. This method requires no chemical degradation of the nucleotides or chromatography. During cell growth, the free ribonucleotide pool is rapidly replaced by de novo synthesized nucleotides. Using [U-13C]-glucose and [U-13C,15N]-glutamine as tracers, we showed that virtually all of the carbons in the nucleotide riboses were derived from glucose, whereas glutamine was preferentially utilized over glucose for pyrimidine ring biosynthesis, via the synthesis of Asp through the Krebs cycle. Incorporation of the glutamine amido nitrogen into the N3 and N9 positions of the purine rings was also demonstrated by proton-detected 15N NMR. The incorporation of 13C from glucose into total RNA was measured and shown to be a major sink for the nucleotides during cell proliferation. This method was applied to determine the metabolic action of an anti-cancer selenium agent (methylseleninic acid or MSA) on A549 cells. We found that MSA inhibited nucleotide turnover and incorporation into RNA, implicating an important role of nucleotide metabolism in the toxic action of MSA on cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DSS:

2,2′-Dimethylsilapentane-5-sulfonate

GSH:

Reduced glutathione

HSQC:

Heteronuclear single quantum coherence

MSA:

Methyl seleninic acid

NSCLC:

Non small cell lung cancer

SIRM:

Stable isotope resolved metabolomics

TOCSY:

Total correlation spectroscopy

References

  • Bak, L. K., Waagepetersen, H. S., Melo, T. M., Schousboe, A., & Sonnewald, U. (2007). Complex glutamate labeling from [U-C-13]glucose or [U-C-13]lactate in co-cultures of cerebellar neurons and astrocytes. Neurochemical Research, 32, 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Beger, R. D., Hansen, D. K., Schnackenberg, L. K., Cross, B. M., Fatollahi, J. J., Lagunero, F. T., et al. (2009). Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U-13C6]-d-glucose tracer in mice. Metabolomics, 5, 336–345.

    Article  PubMed  CAS  Google Scholar 

  • Boren, J., Cascante, M., Marin, S., Comin-Anduix, B., Centelles, J. J., Lim, S., et al. (2001). Gleevec (ST1571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. Journal of Biological Chemistry, 276, 37747–37753.

    PubMed  CAS  Google Scholar 

  • Centelles, J. J., Ramos-Montoya, A., Lim, S., Bassilian, S., Boros, L. G., Marin, S., et al. (2007). Metabolic profile and quantification of deoxyribose synthesis pathways in HepG2 cells. Metabolomics, 3, 105–111.

    Article  CAS  Google Scholar 

  • Clark, L. C., Combs, G. F., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., et al. (1996). Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin a randomized controlled trial—A randomized controlled trial. Journal of the American Medical Association (JAMA), 276, 1957–1963.

    Article  CAS  Google Scholar 

  • Combs, G. F. (2004). Status of selenium in prostate cancer prevention. British Journal of Cancer, 91, 195–199.

    PubMed  CAS  Google Scholar 

  • DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences, 104, 19345–19350.

    Article  CAS  Google Scholar 

  • Delgado, T. C., Castro, M. M., Geraldes, C. F., & Jones, J. G. (2004). Quantitation of erythrocyte pentose pathway flux with [2-(13)]glucose and H-1 NMR analysis of the lactate methyl signal. Magnetic Resonance in Medicine, 51, 1283–1286.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W.-M. & Lane, A. N. (2011a). Assignment strategies for NMR resonances in metabolomics research. In N. Lutz, J. V. Sweedler & Dr. R. A. Wever (Eds.), Methodologies for metabolomics: Experimental strategies and techniques. New York: Cambridge University Press (in press).

  • Fan, T. W.-M., & Lane, A. N. (2008). Structure-based profiling of metabolites and isotopomers by NMR. Progress in NMR Spectroscopy, 52, 69–117.

    Article  CAS  Google Scholar 

  • Fan, T. W. -M., & Lane, A. N. (2011b). NMR-based stable isotope resolved metabolomics in systems biochemistry. Journal of Biomolecular NMR, 49(3–4), 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W. M., Higashi, R. M., Lane, A. N., & Jardetzky, O. (1986). Combined use of proton NMR and gas chromatography-mass spectra for metabolite monitoring and in vivo proton NMR assignments. Biochimica et Biophysica Acta, 882, 154–167.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W.-M., Bandura, L., Higashi, R. M., & Lane, A. N. (2005). Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics, 1, 1–15.

    Article  Google Scholar 

  • Fan, T. W. M., Higashi, R. M., & Lane, A. N. (2006). Integrating metabolomics and transcriptomics for probing Se anticancer mechanisms. Drug Metabolism Reviews, 38, 707–732.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W.-M., Kucia, M., Jankowski, K., Higashi, R. M., Rataczjak, M. Z., Rataczjak, J., et al. (2008). Proliferating rhabdomyosarcoma cells shows an energy producing anabolic metabolic phenotype compared with primary myocytes. Molecular Cancer, 7, 79.

    Article  PubMed  Google Scholar 

  • Fan, T. W.-M., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM)). Molecular Cancer, 8, 41.

    Article  PubMed  Google Scholar 

  • Fan, T. W.-M., Yuan, P., Lane, A. N., Higashi, R. M., Wang, Y., Hamidi, A., et al. (2010). Stable isotope resolved metabolomic analysis of lithium effects on glial-neuronal interactions. Metabolomics, 6, 165–179.

    Article  PubMed  CAS  Google Scholar 

  • Ganther, H. E. (1999). Selenium metabolism, selenoproteins and mechanisms of cancer prevention: Complexities with thioredoxin reductase. Carcinogenesis (Oxford), 20, 1657–1666.

    Article  CAS  Google Scholar 

  • Hiller, K., Metallo, C. M., Kelleher, J. K., & Stephanopoulos, G. (2010). Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Analytical Chemistry, 82, 6621–6628.

    Article  PubMed  CAS  Google Scholar 

  • Hu, V. W., Black, G. E., Torres-Duarte, A., & Abramson, F. P. (2002). H-3-thymidine is a defective tool with which to measure rates of DNA synthesis. FASEB Journal, 16(11), 1456–1457.

    PubMed  CAS  Google Scholar 

  • Ip, C., Dong, Y., & Ganther, H. E. (2002). New concepts in selenium chemoprevention. Cancer and Metastasis Reviews, 21, 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Ippel, J., Wijmenga, S., de Jong, B., Heus, H., Hilbers, C., Vroom, E., et al. (1996). Heteronuclear scalar couplings in the bases and sugar rings of nucleic acids: Their determination and application in assignment and conformational analysis. Magnetic Resonance in Chemistry, 34, S156–S176.

    Article  CAS  Google Scholar 

  • Lane, A. N., & Fan, T. W.-M. (2007). Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics, 3, 79–86.

    Article  CAS  Google Scholar 

  • Lane, A. N., Fan, T. W.-M., & Higashi, R. M. (2008). Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Biophysical Tools for Biologists, 84, 541–588.

    Article  CAS  Google Scholar 

  • Lane, A. N., Fan, T. W.-M., Higashi, R. M., Tan, J., Bousamra, M., & Miller, D. M. (2009). Prospects for clinical cancer metabolomics using stable isotope tracers. Journal of Experimental Molecular Pathology, 86, 165–173.

    Article  CAS  Google Scholar 

  • Lippman, S. M., Klein, E. A., Goodman, P. J., Lucia, M. S., Thompson, I. M., Ford, L. G., et al. (2009). Effect of selenium and vitamin e on risk of prostate cancer and other cancers: The selenium and vitamin E cancer prevention trial (SELECT). Journal of the American Medical Association (JAMA), 301, 39–51.

    Article  CAS  Google Scholar 

  • Lu, X., Bennet, B., Mu, E., Rabinowitz, J., & Kang, Y. (2010). Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. Journal of Biological Chemistry, 285, 9317–9321.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso, A., Zhu, A. Z., Beardsley, N. J., Glickson, J. D., Wehrli, S., & Pickup, S. (2005). Artificial tumor model suitable for monitoring P-31 and C-13 NMR spectroscopic changes during chemotherapy-induced apoptosis in human glioma cells. Magnetic Resonance in Medicine, 54, 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Mason, G. F., Petersen, K. F., de Graaf, R. A., Shulman, G. I., & Rothman, D. L. (2007). Measurements of the anaplerotic rate in the human cerebral cortex using C-13 magnetic resonance spectroscopy and [1-C-13] and [2-C-13] glucose. Journal of Neurochemistry, 100, 73–86.

    Article  PubMed  CAS  Google Scholar 

  • Mendes, A. C., Caldeira, M. M., Silva, C., Burgess, S. C., Merritt, M. E., Gomes, F., et al. (2006). Hepatic UDP-glucose C-13 isotopomers from [U-C-13]glucose: A simple analysis by C-13 NMR of urinary menthol glucuronide. Magnetic Resonance in Medicine, 56, 1121–1125.

    Article  PubMed  CAS  Google Scholar 

  • Morrish, F., Isern, N., Sadilek, M., Jeffrey, M., & Hockenbery, D. M. (2009). c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene, 28, 2485–2491.

    Article  PubMed  CAS  Google Scholar 

  • Moseley, H. N. B., Lane, A. N., Belshoff, A. C., Higashi, R. M., & Fan, W. W.-M. (2011). Non-steady state modeling of UDP-GlcNAc biosynthesis is enabled by stable isotope resolved metabolomics (SIRM). BMC Biology, 9, 37.

    Article  PubMed  CAS  Google Scholar 

  • Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J., Rodwell, V. W., & Weil, P. A. (2009). Harper’s illustrated biochemistry. New York: McGraw-Hill.

    Google Scholar 

  • Nelson, D. L., & Cox, M. M. (2005). Lehninger principles of biochemistry. New York: W.H. Freeman and Company.

    Google Scholar 

  • Telang, S., Lane, A. N., Nelson, K. K., Arumugam, S., & Chesney, J. A. (2007). The oncoprotein H-RasV12 increases mitochondrial metabolism. Molecular Cancer, 6, 77.

    Article  PubMed  Google Scholar 

  • Vizan, P., Boros, L. G., Figueras, A., Capella, G., Mangues, R., Bassilian, S., et al. (2005). K-ras codon-specific mutations produce distinctive metabolic phenotypes in human fibroblasts. Cancer Research, 65, 5512–5515.

    Article  PubMed  CAS  Google Scholar 

  • Vizan, P., Alcarraz-Vizan, G., Diaz-Moralli, S., Rodriguez-Prados, J. C., Zanuy, M., Centelles, J. J., et al. (2007). Quantification of intracellular phosphorylated carbohydrates in HT29 human colon adenocarcinoma cell line using liquid chromatography-electrospray ionization tandem mass spectrometry. Analytical Chemistry, 79, 5000–5005.

    Article  PubMed  CAS  Google Scholar 

  • Yuneva, M. (2008). Finding an “Achilles’ heel” of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle, 7, 2083–2089.

    Article  PubMed  CAS  Google Scholar 

  • Zwingmann, C., & Leibfritz, D. (2003). Regulation of glial metabolism studied by C-13-NMR. NMR in Biomedicine, 16, 370–399.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. S. Arumugam for assistance in the NMR measurements. This study was supported in part by National Science Foundation EPSCoR grant # EPS-0447479; NIH NCRR Grant 5P20RR018733, 1R01CA118434-01A2 (to TWMF), 1RO1 CA101199 (to TWMF), R21CA133668-01 (to ANL) from the National Cancer Institute; the Kentucky Challenge for Excellence, and the Brown Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Lane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2011_337_MOESM1_ESM.doc

Figure S1. Effect of MSA on 13C incorporation from [U-13C]-glucose into the ribose subunit of A549 RNA. A549 cells were grown in [U-13C]-glucose in the absence or presence of MSA. Total RNA was extracted and digested for 2-D 1H TOCSY NMR analysis in terms of fractional (%) 13C enrichment in C1’ of AMP ribose as described in the methods. Each data point represents an average of two replicates. Red: control, Blue: +5 μM MSA. (DOC 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, T.WM., Tan, J., McKinney, M.M. et al. Stable isotope resolved metabolomics analysis of ribonucleotide and RNA metabolism in human lung cancer cells. Metabolomics 8, 517–527 (2012). https://doi.org/10.1007/s11306-011-0337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0337-9

Keywords

Navigation