Skip to main content
Log in

A2A adenosine receptor activation prevents neutrophil aging and promotes polarization from N1 towards N2 phenotype

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular adenosine is a biologically active signaling molecule that accumulates at sites of metabolic stress in sepsis. Extracellular adenosine has potent immunosuppressive effects by binding to and activating G protein-coupled A2A adenosine receptors (A2AARs) on the surface of neutrophils. A2AAR signaling reproduces many of the phenotypic changes in neutrophils that are characteristic of sepsis, including decreased degranulation, impaired chemotaxis, and diminished ability to ingest and kill bacteria. We hypothesized that A2AARs also suppress neutrophil aging, which precedes cell death, and N1 to N2 polarization. Using human neutrophils isolated from healthy subjects, we demonstrate that A2AAR stimulation slows neutrophil aging, suppresses cell death, and promotes the polarization of neutrophils from an N1 to N2 phenotype. Using genetic knockout and pharmacological blockade, we confirmed that A2AARs decrease neutrophil aging in murine sepsis induced by cecal ligation and puncture. A2AARs expression is increased in neutrophils from septic patients compared to healthy subject but A2AAR expression fails to correlate with aging or N1/N2 polarization. Our data reveals that A2AARs regulate neutrophil aging in healthy but not septic neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heron M (2021) Deaths: leading causes for 2019. National vital statistics reports: from the centers for disease control and prevention, national center for health statistics, national vital statistics system 70, 1–114 https://doi.org/10.15620/cdc:107021. https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-1-508.pdf, last accessed July 9, 2022

  3. Liu V, Escobar GJ, Greene JD et al (2014) Hospital deaths in patients with sepsis from 2 independent cohorts. Jama 312:90–92. https://doi.org/10.1001/jama.2014.5804

    Article  CAS  PubMed  Google Scholar 

  4. Benjamim CF, Hogaboam CM, Kunkel SL (2004) The chronic consequences of severe sepsis. J Leukoc Biol 75:408–412. https://doi.org/10.1189/jlb.0503214jlb.0503214]

    Article  CAS  PubMed  Google Scholar 

  5. Bone RC, Balk RA, Cerra FB et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101(6):1644–55

  6. Oberholzer A, Oberholzer C, Moldawer LL (2002) Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit Care Med 30:S58–S63

    Article  CAS  Google Scholar 

  7. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C et al (2011) The pathogenesis of sepsis. Annu Rev Pathol 6:19–48. https://doi.org/10.1146/annurev-pathol-011110-130327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delano MJ, Ward PA (2016) The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev 274:330–353. https://doi.org/10.1111/imr.12499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alves-Filho JC, Spiller F, Cunha FQ (2010) Neutrophil paralysis in sepsis. Shock 34(Suppl 1):15–21. https://doi.org/10.1097/SHK.0b013e3181e7e61b

    Article  PubMed  Google Scholar 

  10. Cummings CJ, Martin TR, Frevert CW et al (1999) Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J Immunol (Baltimore, Md: 1950) 162:2341–2346

    CAS  Google Scholar 

  11. Kovach MA, Standiford TJ (2012) The function of neutrophils in sepsis. Curr Opin Infect Dis 25:321–327. https://doi.org/10.1097/QCO.0b013e3283528c9b

    Article  CAS  PubMed  Google Scholar 

  12. McDonald B, Urrutia R, Yipp BG et al (2012) Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12:324–333. https://doi.org/10.1016/j.chom.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  13. Clark SR, Ma AC, Tavener SA et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463–469. https://doi.org/10.1038/nm1565

    Article  CAS  PubMed  Google Scholar 

  14. Delano MJ, Ward PA (2016) Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J Clin Invest 126:23–31. https://doi.org/10.1172/JCI82224

    Article  PubMed  PubMed Central  Google Scholar 

  15. Antonioli L, Blandizzi C, Pacher P, Hasko G (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13:842–857. https://doi.org/10.1038/nrc3613

    Article  CAS  PubMed  Google Scholar 

  16. Antonioli L, Pacher P, Vizi ES, Hasko G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367. https://doi.org/10.1016/j.molmed.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770. https://doi.org/10.1038/nrd2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Antonioli L, Blandizzi C, Csoka B et al (2015) Adenosine signalling in diabetes mellitus-pathophysiology and therapeutic considerations. Nat Rev Endocrinol 11:228–241. https://doi.org/10.1038/nrendo.2015.10

    Article  CAS  PubMed  Google Scholar 

  19. Blackburn MR (2003) Too much of a good thing: adenosine overload in adenosine-deaminase-deficient mice. Trends Pharmacol Sci 24:66–70. https://doi.org/10.1016/S0165-6147(02)00045-7

    Article  CAS  PubMed  Google Scholar 

  20. Hasko G, Deitch EA, Szabo C et al (2002) Adenosine: a potential mediator of immunosuppression in multiple organ failure. Curr Opin Pharmacol 2:440–444. https://doi.org/10.1016/s1471-4892(02)00172-8

    Article  CAS  PubMed  Google Scholar 

  21. Csoka B, Himer L, Selmeczy Z et al (2008) Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J 22:3491–3499. https://doi.org/10.1096/fj.08-107458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Csoka B, Nemeth ZH, Virag L et al (2007) A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110:2685–2695. https://doi.org/10.1182/blood-2007-01-065870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hasko G, Szabo C, Nemeth ZH et al (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157:4634–4640

    CAS  PubMed  Google Scholar 

  24. Hasko G, Cronstein B (2013) Regulation of inflammation by adenosine. Front Immunol 4:85. https://doi.org/10.3389/fimmu.2013.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hasko G, Pacher P (2012) Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 32:865–869. https://doi.org/10.1161/ATVBAHA.111.226852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Csoka B, Selmeczy Z, Koscso B et al (2012) Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 26:376–386. https://doi.org/10.1096/fj.11-190934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Belikoff B, Hatfield S, Sitkovsky M, Remick DG (2011) Adenosine negative feedback on A2A adenosine receptors mediates hyporesponsiveness in chronically septic mice. Shock 35:382–387. https://doi.org/10.1097/SHK.0b013e3182085f12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Merino M, Martin SS, Sandana P et al (2020) Deletion of the adenosine A2A receptor increases the survival rate in a mice model of polymicrobial sepsis. Purinergic Signal 16:427–437. https://doi.org/10.1007/s11302-020-09719-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nemeth ZH, Csoka B, Wilmanski J et al (2006) Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis. J Immunol 176:5616–5626

    Article  CAS  Google Scholar 

  30. Ohms M, Möller S, Laskay T (2020) An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro. Front Immunol 11:532. https://doi.org/10.3389/fimmu.2020.00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rubenich DS, de Souza PO, Omizzollo N et al (2021) Neutrophils: fast and furious-the nucleotide pathway. Purinergic Signal 17:371–383. https://doi.org/10.1007/s11302-021-09786-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen F, Wu W, Millman A et al (2014) Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat Immunol 15:938–946. https://doi.org/10.1038/ni.2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bao Y, Ledderose C, Seier T et al (2014) Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. J Biol Chem 289:26794–26803. https://doi.org/10.1074/jbc.M114.572495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Y, Corriden R, Inoue Y et al (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795. https://doi.org/10.1126/science.1132559

    Article  CAS  PubMed  Google Scholar 

  35. Corriden R, Chen Y, Inoue Y et al (2008) Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem 283:28480–28486. https://doi.org/10.1074/jbc.M800039200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang D, Chen G, Manwani D et al (2015) Neutrophil ageing is regulated by the microbiome. Nature 525:528–532. https://doi.org/10.1038/nature15367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirano Y, Ode Y, Ochani M et al (2018) Targeting junctional adhesion molecule-C ameliorates sepsis-induced acute lung injury by decreasing CXCR4(+) aged neutrophils. J Leukoc Biol 104:1159–1171. https://doi.org/10.1002/JLB.3A0218-050R

    Article  CAS  PubMed  Google Scholar 

  38. Csoka B, Nemeth ZH, Rosenberger P et al (2010) A2B adenosine receptors protect against sepsis-induced mortality by dampening excessive inflammation. J Immunol 185:542–550. https://doi.org/10.4049/jimmunol.0901295

    Article  CAS  PubMed  Google Scholar 

  39. Csoka B, Nemeth ZH, Szabo I et al (2018) Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight. 2018;3(11):e99431

  40. Csoka B, Nemeth ZH, Toro G et al (2015) Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing. FASEB J 29:3626–3637. https://doi.org/10.1096/fj.15-272450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Csoka B, Nemeth ZH, Toro G et al (2015) CD39 improves survival in microbial sepsis by attenuating systemic inflammation. FASEB J 29:25–36. https://doi.org/10.1096/fj.14-253567

    Article  CAS  PubMed  Google Scholar 

  42. Hasko G, Csoka B, Koscso B et al (2011) Ecto-5’-nucleotidase (CD73) decreases mortality and organ injury in sepsis. J Immunol 187:4256–4267. https://doi.org/10.4049/jimmunol.1003379

    Article  CAS  PubMed  Google Scholar 

  43. Lovaszi M, Nemeth ZH, Gause WC et al (2021) Inosine monophosphate and inosine differentially regulate endotoxemia and bacterial sepsis. FASEB J 35:e21935. https://doi.org/10.1096/fj.202100862R

    Article  CAS  PubMed  Google Scholar 

  44. Gupta N, Wish JB (2017) Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for anemia in patients with CKD. Am J Kidney Dis 69:815–826. https://doi.org/10.1053/j.ajkd.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  45. De Filippo K, Rankin SM (2018) CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Investig 48(Suppl 2):e12949. https://doi.org/10.1111/eci.12949

    Article  CAS  Google Scholar 

  46. Nagase H, Miyamasu M, Yamaguchi M et al (2002) Cytokine-mediated regulation of CXCR4 expression in human neutrophils. J Leukoc Biol 71:711–717. https://doi.org/10.1189/jlb.71.4.711

    Article  CAS  PubMed  Google Scholar 

  47. Melrose J, Tsurushita N, Liu G, Berg EL (1998) IFN-gamma inhibits activation-induced expression of E- and P-selectin on endothelial cells. J Immunol (Baltimore, Md: 1950) 161:2457–2464

    CAS  Google Scholar 

  48. McCracken JM, Allen LA (2014) Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death 7:15–23. https://doi.org/10.4137/jcd.s11038

    Article  PubMed  PubMed Central  Google Scholar 

  49. Himer L, Csoka B, Selmeczy Z et al (2010) Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J 24:2631–2640. https://doi.org/10.1096/fj.10-155192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu YW, Yang T, Zhao L et al (2016) Activation of adenosine 2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome. Sci Rep 6:33614. https://doi.org/10.1038/srep33614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33:949–955. https://doi.org/10.1093/carcin/bgs123

    Article  CAS  PubMed  Google Scholar 

  52. Chao T, Furth EE, Vonderheide RH (2016) CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol Res 4:968–982. https://doi.org/10.1158/2326-6066.cir-16-0188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sengeløv H, Kjeldsen L, Diamond MS et al (1993) Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest 92:1467–1476. https://doi.org/10.1172/JCI116724

    Article  PubMed  PubMed Central  Google Scholar 

  54. Martin C, Burdon PC, Bridger G et al (2003) Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19:583–593. https://doi.org/10.1016/s1074-7613(03)00263-2

    Article  CAS  PubMed  Google Scholar 

  55. Uhl B, Vadlau Y, Zuchtriegel G et al (2016) Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood 128:2327–2337. https://doi.org/10.1182/blood-2016-05-718999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zarbock A, Ley K (2009) Neutrophil adhesion and activation under flow. Microcirculation (New York, NY : 1994) 16:31–42. https://doi.org/10.1080/10739680802350104

    Article  CAS  Google Scholar 

  57. Wang H, Zhang W, Tang R et al (2010) Adenosine receptor A2A deficiency in leukocytes increases arterial neointima formation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 30:915–922. https://doi.org/10.1161/ATVBAHA.109.202572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yago T, Tsukamoto H, Liu Z et al (2015) Multi-inhibitory effects of A2A adenosine receptor signaling on neutrophil adhesion under flow. J Immunol 195:3880–3889. https://doi.org/10.4049/jimmunol.1500775

    Article  CAS  PubMed  Google Scholar 

  59. Save S, Mohlin C, Vumma R, Persson K (2011) Activation of adenosine A2A receptors inhibits neutrophil transuroepithelial migration. Infect Immun 79:3431–3437. https://doi.org/10.1128/IAI.05005-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Revan S, Montesinos MC, Naime D et al (1996) Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J Biol Chem 271:17114–17118

    Article  CAS  Google Scholar 

  61. Sullivan GW, Linden J, Buster BL, Scheld WM (1999) Neutrophil A2A adenosine receptor inhibits inflammation in a rat model of meningitis: synergy with the type IV phosphodiesterase inhibitor, rolipram. J Infect Dis 180:1550–1560. https://doi.org/10.1086/315084

    Article  CAS  PubMed  Google Scholar 

  62. Visser SS, Theron AJ, Ramafi G et al (2000) Apparent involvement of the A(2A) subtype adenosine receptor in the anti-inflammatory interactions of CGS 21680, cyclopentyladenosine, and IB-MECA with human neutrophils. Biochem Pharmacol 60:993–999

    Article  CAS  Google Scholar 

  63. Abe K, Matsuki N (2000) Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci Res 38:325–329

    Article  CAS  Google Scholar 

  64. Walker BA, Rocchini C, Boone RH et al (1997) Adenosine A2a receptor activation delays apoptosis in human neutrophils. J Immunol 158:2926–2931

    CAS  PubMed  Google Scholar 

  65. Adrover JM, Nicolas-Avila JA, Hidalgo A (2016) Aging: a temporal dimension for neutrophils. Trends Immunol 37:334–345. https://doi.org/10.1016/j.it.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  66. David JM, Dominguez C, Hamilton DH, Palena C (2016) The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines (Basel) . 2016;4(3):22

  67. Csoka B, Koscso B, Toro G et al (2014) A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation. Diabetes 63:850–866. https://doi.org/10.2337/db13-0573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koscso B, Csoka B, Kokai E et al (2013) Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. J Leukoc Biol 94:1309–1315. https://doi.org/10.1189/jlb.0113043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lukashev D, Sitkovsky M, Ohta A (2007) From “Hellstrom Paradox” to anti-adenosinergic cancer immunotherapy. Purinergic Signal 3:129–134. https://doi.org/10.1007/s11302-006-9044-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ohta A, Gorelik E, Prasad SJ et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137. https://doi.org/10.1073/pnas.0605251103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kreth S, Ledderose C, Kaufmann I et al (2008) Differential expression of 5’-UTR splice variants of the adenosine A2A receptor gene in human granulocytes: identification, characterization, and functional impact on activation. FASEB J 22:3276–3286. https://doi.org/10.1096/fj.07-101097

    Article  CAS  PubMed  Google Scholar 

  72. Kreth S, Kaufmann I, Ledderose C et al (2009) Reduced ligand affinity leads to an impaired function of the adenosine A2A receptor of human granulocytes in sepsis. J Cell Mol Med 13:985–994. https://doi.org/10.1111/j.1582-4934.2008.00530.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health Grants R01GM06618916, R01DK11379004, and R01HL158519 awarded to GH. Research reported in this publication was performed in the CCTI Flow Cytometry Core, supported in part by the Office of the Director, National Institutes of Health under awards S10RR027050. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

ML: designed the research, performed the research, analyzed the data, writing—original draft

ZHN: performed the research

PP: writing—review

WG: writing—review

GW: provided the study patients

GH: conceptualization, writing—review and editing, funding acquisition

Corresponding author

Correspondence to György Haskó.

Ethics declarations

Conflicts of interest

G.H. owns stock in Purine Pharmaceuticals, Inc.

Marianna Lovászi declares that she has no financial conflicts of interest.

Zoltán H. Németh declares that he has no financial conflicts of interest.

Pál Pacher declares that he has no financial conflicts of interest.

William C. Gause declares that he has no financial conflicts of interest.

Gebhard Wagener declares that he has no financial conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Fig. 1

Flow cytometry gating strategies for human and mice neutrophils. Flow cytometry gating strategy depicted for human neutrophils (A). Granulocyte gating based on forward and side scatter (i), gating for single cells with height to area ratio (ii), gating for viable cells with LIVE/DEAD Fixable Violet Dead Cell staining (iii), selection of CD16/CD66b double positive human neutrophils. Flow cytometry gating strategy shown for mice neutrophils (B). Granulocyte gating based on forward and side scatter (i), gating for single cells with height to area ratio (ii), gating for viable cells with LIVE/DEAD Fixable Aqua Dead Cell staining (iii), selection of Ly6G/CD11b double positive mouse neutrophils. SSC-A: side scatter area; FSC-A: forward scatter area; FSC-H: forward scatter height (PNG 631 kb)

High resolution image (TIF 5143 kb)

Supplementary Fig. 2

The effect of CGS 21680 is concentration dependent. CXCR4 (A-B) and ICAM-1 (C-D) expression is depicted at 24h under treatment with increasing concentration of CGS 21680 (blue-1μM; orange-3μM, red-10μM). Values of histograms are quantified and shown in graphs expressed as mean ± SEM of MFI and are representative of 3 observations. **p ≤0.01, ***p ≤0.001 (PNG 460 kb)

High resolution image (TIF 4243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovászi, M., Németh, Z.H., Pacher, P. et al. A2A adenosine receptor activation prevents neutrophil aging and promotes polarization from N1 towards N2 phenotype. Purinergic Signalling 18, 345–358 (2022). https://doi.org/10.1007/s11302-022-09884-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09884-0

Keywords

Navigation