Skip to main content

Advertisement

Log in

Pleiotropic effects of clopidogrel

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Clopidogrel is a widely prescribed prodrug with anti-thrombotic activity through irreversible inhibition of the P2Y12 receptor on platelets. It is FDA-approved for the clinical management of thrombotic diseases like unstable angina, myocardial infarction, stroke, and during percutaneous coronary interventions. Hepatic clopidogrel metabolism generates several distinct metabolites. Only one of these metabolites is responsible for inhibiting the platelet P2Y12 receptor. Importantly, various non-hemostatic effects of clopidogrel therapy have been described. These non-hemostatic effects are perhaps unsurprising, as P2Y12 receptor expression has been reported in multiple tissues, including osteoblasts, leukocytes, as well as vascular endothelium and smooth muscle. While the “inactive” metabolites have been commonly thought to be biologically inert, recent findings have uncovered P2Y12 receptor-independent effects of clopidogrel treatment that may be mediated by understudied metabolites. In this review, we summarize both the P2Y12 receptor-mediated and non-P2Y12 receptor-mediated effects of clopidogrel and its metabolites in various tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from Kuszynski et al. [95]

Similar content being viewed by others

Data availability

All the data analyzed in this review are available in the cited references.

References

  1. Dangelmaier C, Jin J, Smith JB, Kunapuli SP (2001) Potentiation of thromboxane A2-induced platelet secretion by Gi signaling through the phosphoinositide-3 kinase pathway. Thromb Haemost 85:341–348. https://doi.org/10.1055/s-0037-1615690

    Article  CAS  PubMed  Google Scholar 

  2. Maffrand J-P (2012) The story of clopidogrel and its predecessor, ticlopidine: could these major antiplatelet and antithrombotic drugs be discovered and developed today? C R Chim 15:737–743. https://doi.org/10.1016/j.crci.2012.05.006

    Article  CAS  Google Scholar 

  3. Lee H, Paton RC, Ruan C, Caen JP (1981) The in vitro effect of ticlopidine on fibrinogen and factor VIII binding to human platelets. Thromb Haemost 46:590–592

    Article  CAS  Google Scholar 

  4. Savi P, Laplace MC, Maffrand JP, Herbert JM (1994) Binding of [3H]-2-methylthio ADP to rat platelets–effect of clopidogrel and ticlopidine. J Pharmacol Exp Ther 269:772–777

    CAS  PubMed  Google Scholar 

  5. Mills DC, Puri R, Hu CJ, Minniti C, Grana G, Freedman MD et al (1992) Clopidogrel inhibits the binding of ADP analogues to the receptor mediating inhibition of platelet adenylate cyclase. Arterioscler Thromb 12:430–436. https://doi.org/10.1161/01.atv.12.4.430

    Article  CAS  PubMed  Google Scholar 

  6. Feliste R, Simon MF, Chap H, Douste-Blazy L, Defreyn G, Maffrand JP (1988) Effect of PCR 4099 on ADP-induced calcium movements and phosphatidic acid production in rat platelets. Biochem Pharmacol 37:2559–2564. https://doi.org/10.1016/0006-2952(88)90246-8

    Article  CAS  PubMed  Google Scholar 

  7. Gachet C, Cazenave JP, Ohlmann P, Bouloux C, Defreyn G, Driot F et al (1990) The thienopyridine ticlopidine selectively prevents the inhibitory effects of ADP but not of adrenaline on cAMP levels raised by stimulation of the adenylate cyclase of human platelets by PGE1. Biochem Pharmacol 40:2683–2687. https://doi.org/10.1016/0006-2952(90)90587-b

    Article  CAS  PubMed  Google Scholar 

  8. Féliste R, Delebassée D, Simon MF, Chap H, Defreyn G, Vallée E et al (1987) Broad spectrum anti-platelet activity of ticlopidine and PCR 4099 involves the suppression of the effects of released ADP. Thromb Res 48:403–415. https://doi.org/10.1016/0049-3848(87)90398-7

    Article  PubMed  Google Scholar 

  9. Defreyn G, Gachet C, Savi P, Driot F, Cazenave JP, Maffrand JP (1991) Ticlopidine and clopidogrel (SR 25990C) selectively neutralize ADP inhibition of PGE1-activated platelet adenylate cyclase in rats and rabbits. Thromb Haemost 65:186–190. https://doi.org/10.1055/s-0038-1647481

    Article  CAS  PubMed  Google Scholar 

  10. Gachet C, Stierlé A, Cazenave JP, Ohlmann P, Lanza F, Bouloux C et al (1990) The thienopyridine PCR 4099 selectively inhibits ADP-induced platelet aggregation and fibrinogen binding without modifying the membrane glycoprotein IIb-IIIa complex in rat and in man. Biochem Pharmacol 40:229–238. https://doi.org/10.1016/0006-2952(90)90683-c

    Article  CAS  PubMed  Google Scholar 

  11. Damas J, Grek V, Remacle-Volon G (1987) Inhibition of the thrombocytopenic effect of exogenous and endogenous thrombin by PCR 4099 (d,1)methyl 2-(2-chlorophenyl)-2(4,5,6, 7-tetrahydrothieno (3,2-c)pyridin-5-yl) acetate.hydrochloride.monohydrate. Thromb Res 48:585–589. https://doi.org/10.1016/0049-3848(87)90390-2

    Article  CAS  PubMed  Google Scholar 

  12. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V et al (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207. https://doi.org/10.1038/35051599

    Article  CAS  PubMed  Google Scholar 

  13. Takasaki J, Kamohara M, Saito T, Matsumoto M, Matsumoto S, Ohishi T et al (2001) Molecular cloning of the platelet P2T(AC) ADP receptor: pharmacological comparison with another ADP receptor, the P2Y(1) receptor. Mol Pharmacol 60:432–439

    CAS  PubMed  Google Scholar 

  14. Savi P, Labouret C, Delesque N, Guette F, Lupker J, Herbert JM (2001) P2y(12), a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 283:379–383. https://doi.org/10.1006/bbrc.2001.4816

    Article  CAS  PubMed  Google Scholar 

  15. Coukell AJ, Markham A (1997) Clopidogrel. Drugs 54:745–50. https://doi.org/10.2165/00003495-199754050-00006 (discussion 751)

    Article  CAS  PubMed  Google Scholar 

  16. Ding Z, Kim S, Dorsam RT, Jin J, Kunapuli SP (2003) Inactivation of the human P2Y12 receptor by thiol reagents requires interaction with both extracellular cysteine residues, Cys17 and Cys270. Blood 101:3908–3914. https://doi.org/10.1182/blood-2002-10-3027

    Article  CAS  PubMed  Google Scholar 

  17. Drug Approval Package: Plavix/Clopidogrel bisulfate NDA 20839. [cited 2 Jun 2022]. Available: https://www.accessdata.fda.gov/drugsatfda_docs/nda/97/020839_plavix_toc.cfm

  18. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP et al (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84:891–896. https://doi.org/10.1055/s-0037-1614133

    Article  CAS  PubMed  Google Scholar 

  19. Bouman HJ, Schömig E, van Werkum JW, Velder J, Hackeng CM, Hirschhäuser C et al (2011) Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17:110–116. https://doi.org/10.1038/nm.2281

    Article  CAS  PubMed  Google Scholar 

  20. Silvestro L, Gheorghe M, Iordachescu A, Ciuca V, Tudoroniu A, Rizea Savu S et al (2011) Development and validation of an HPLC-MS/MS method to quantify clopidogrel acyl glucuronide, clopidogrel acid metabolite, and clopidogrel in plasma samples avoiding analyte back-conversion. Anal Bioanal Chem 401:1023–1034. https://doi.org/10.1007/s00216-011-5147-4

    Article  CAS  PubMed  Google Scholar 

  21. Lins R, Broekhuysen J, Necciari J, Deroubaix X (1999) Pharmacokinetic profile of 14C-labeled clopidogrel. Semin Thromb Hemost 25(Suppl 2):29–33

    CAS  PubMed  Google Scholar 

  22. Caplain H, Donat F, Gaud C, Necciari J (1999) Pharmacokinetics of clopidogrel. Semin Thromb Hemost 25(Suppl 2):25–28

    CAS  PubMed  Google Scholar 

  23. Hagihara K, Kazui M, Kurihara A, Yoshiike M, Honda K, Okazaki O et al (2009) A possible mechanism for the differences in efficiency and variability of active metabolite formation from thienopyridine antiplatelet agents, prasugrel and clopidogrel. Drug Metab Dispos 37:2145–2152. https://doi.org/10.1124/dmd.109.028498

    Article  CAS  PubMed  Google Scholar 

  24. Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C et al (2006) Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther 319:1467–1476. https://doi.org/10.1124/jpet.106.110577

    Article  CAS  PubMed  Google Scholar 

  25. Funck-Brentano C, Szymezak J, Steichen O, Ducint D, Molimard M, Remones V et al (2013) Effects of rabeprazole on the antiplatelet effects and pharmacokinetics of clopidogrel in healthy volunteers. Arch Cardiovasc Dis 106:661–671. https://doi.org/10.1016/j.acvd.2013.09.002

    Article  PubMed  Google Scholar 

  26. Lin R, Zhang L, Zhang P, Zhou L, Liu T, Li Y et al (2015) Influence of CYP2C19 loss-of-function variants on the metabolism of clopidogrel in patients from north-western China. J Clin Pharm Ther 40:308–314. https://doi.org/10.1111/jcpt.12254

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Zhao X, Lin J, Li H, Johnston SC, Lin Y et al (2016) Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA 316:70–78. https://doi.org/10.1001/jama.2016.8662

    Article  CAS  PubMed  Google Scholar 

  28. Zhou H, Meng S, Zhao J, Dong J, Xu A, Wang F et al (2013) Influence of genetic and non-genetic factors on the plasma concentrations of the clopidogrel metabolite (SR26334) among Chinese patients. Clin Chim Acta 416:50–53. https://doi.org/10.1016/j.cca.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  29. FDA Drug Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug | FDA. [cited 29 Nov 2021]. Available: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/fda-drug-safety-communication-reduced-effectiveness-plavix-clopidogrel-patients-who-are-poor

  30. Angiolillo DJ, Gibson CM, Cheng S, Ollier C, Nicolas O, Bergougnan L et al (2011) Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects: randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther 89:65–74. https://doi.org/10.1038/clpt.2010.219

    Article  CAS  PubMed  Google Scholar 

  31. Ge P-X, Jiang L-P, Tai T, Zhu T, Ji J-Z, Li Y-F et al (2021) Short-term standard alcohol consumption enhances platelet response to clopidogrel through inhibition of Nrf2/Ces1 pathway and induction of Cyp2c in mice. Life Sci 279:119268. https://doi.org/10.1016/j.lfs.2021.119268

    Article  CAS  PubMed  Google Scholar 

  32. Laizure SC, Hu Z-Y, Potter PM, Parker RB (2020) Inhibition of carboxylesterase-1 alters clopidogrel metabolism and disposition. Xenobiotica 50:245–251. https://doi.org/10.1080/00498254.2019.1612535

    Article  CAS  PubMed  Google Scholar 

  33. Price MJ, Murray SS, Angiolillo DJ, Lillie E, Smith EN, Tisch RL et al (2012) Influence of genetic polymorphisms on the effect of high- and standard-dose clopidogrel after percutaneous coronary intervention: the GIFT (genotype information and functional testing) study. J Am Coll Cardiol 59:1928–1937. https://doi.org/10.1016/j.jacc.2011.11.068

    Article  CAS  PubMed  Google Scholar 

  34. Angiolillo DJ, Jakubowski JA, Ferreiro JL, Tello-Montoliu A, Rollini F, Franchi F et al (2014) Impaired responsiveness to the platelet P2Y12 receptor antagonist clopidogrel in patients with type 2 diabetes and coronary artery disease. J Am Coll Cardiol 64:1005–1014. https://doi.org/10.1016/j.jacc.2014.06.1170

    Article  CAS  PubMed  Google Scholar 

  35. Erlinge D, Varenhorst C, Braun OO, James S, Winters KJ, Jakubowski JA et al (2008) Patients with poor responsiveness to thienopyridine treatment or with diabetes have lower levels of circulating active metabolite, but their platelets respond normally to active metabolite added ex vivo. J Am Coll Cardiol 52:1968–1977. https://doi.org/10.1016/j.jacc.2008.07.068

    Article  CAS  PubMed  Google Scholar 

  36. Sun Y, Venugopal J, Guo C, Fan Y, Li J, Gong Y et al (2020) Clopidogrel resistance in a murine model of diet-induced obesity is mediated by the interleukin -1 receptor and overcome with DT-678. Arterioscler Thromb Vasc Biol 40:1533–1542. https://doi.org/10.1161/ATVBAHA.120.314146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koupenova M, Clancy L, Corkrey HA, Freedman JE (2018) Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 122:337–351. https://doi.org/10.1161/CIRCRESAHA.117.310795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276-1290.e17. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  39. Burnstock G (2018) Purine and purinergic receptors. Brain Neurosci Adv 2:239821281881749. https://doi.org/10.1177/2398212818817494

    Article  Google Scholar 

  40. Orriss IR, Burnstock G, Arnett TR (2010) Purinergic signalling and bone remodelling. Curr Opin Pharmacol 10:322–330. https://doi.org/10.1016/j.coph.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  41. Uehara K, Uehara A (2011) P2Y1, P2Y6, and P2Y12 receptors in rat splenic sinus endothelial cells: an immunohistochemical and ultrastructural study. Histochem Cell Biol 136:557–567. https://doi.org/10.1007/s00418-011-0859-2

    Article  CAS  PubMed  Google Scholar 

  42. Gdula AM, Swiatkowska M (2020) Effects of dual purinoceptor-dependent approach on release of vascular endothelial growth factor from human microvascular endothelial cell (HMEC-1) and endothelial cell condition. J Cardiovasc Pharmacol 76:349–359. https://doi.org/10.1097/FJC.0000000000000866

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Xu D, Hou K, Gou X, Li Y (2020) The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 50:874–885. https://doi.org/10.1007/s11239-020-02098-4

    Article  CAS  PubMed  Google Scholar 

  44. Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120:207–228. https://doi.org/10.1161/CIRCRESAHA.116.309726

    Article  CAS  PubMed  Google Scholar 

  45. Tissue expression of P2RY12 - summary - the Human Protein Atlas. [cited 29 Nov 2021]. Available: https://www.proteinatlas.org/ENSG00000169313-P2RY12/tissue

  46. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874. https://doi.org/10.1038/nature01323

    Article  CAS  PubMed  Google Scholar 

  47. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47:C7-12. https://doi.org/10.1016/j.jacc.2005.09.068

    Article  CAS  PubMed  Google Scholar 

  48. Heim C, Gebhardt J, Ramsperger-Gleixner M, Jacobi J, Weyand M, Ensminger SM (2016) Clopidogrel significantly lowers the development of atherosclerosis in ApoE-deficient mice in vivo. Heart Vessels 31:783–794. https://doi.org/10.1007/s00380-015-0696-7

    Article  PubMed  Google Scholar 

  49. Li M, Zhang Y, Ren H, Zhang Y, Zhu X (2007) Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model. Atherosclerosis 194:348–356. https://doi.org/10.1016/j.atherosclerosis.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  50. Halim H, Pinkaew D, Chunhacha P, Sinthujaroen P, Thiagarajan P, Fujise K (2019) Ticagrelor induces paraoxonase-1 (PON1) and better protects hypercholesterolemic mice against atherosclerosis compared to clopidogrel. PLoS ONE 14:e0218934. https://doi.org/10.1371/journal.pone.0218934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang J, Shi Q, Hu Y, Li X (2021) Silibinin augments the effect of clopidogrel on atherosclerosis in diabetic ApoE deficiency mice. Clin Hemorheol Microcirc. https://doi.org/10.3233/CH-211279

    Article  PubMed  Google Scholar 

  52. Evans DJW, Jackman LE, Chamberlain J, Crosdale DJ, Judge HM, Jetha K et al (2009) Platelet P2Y(12) receptor influences the vessel wall response to arterial injury and thrombosis. Circulation 119:116–122. https://doi.org/10.1161/CIRCULATIONAHA.107.762690

    Article  CAS  PubMed  Google Scholar 

  53. Lindemann S, Krämer B, Seizer P, Gawaz M (2007) Platelets, inflammation and atherosclerosis. J Thromb Haemost 5(Suppl 1):203–211. https://doi.org/10.1111/j.1538-7836.2007.02517.x

    Article  CAS  PubMed  Google Scholar 

  54. Gawaz M, Neumann FJ, Dickfeld T, Koch W, Laugwitz KL, Adelsberger H et al (1998) Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation 98:1164–1171. https://doi.org/10.1161/01.cir.98.12.1164

    Article  CAS  PubMed  Google Scholar 

  55. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M et al (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107:1255–1262. https://doi.org/10.1172/JCI11871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oh M, Lee CW, Lee HS, Chang M, Ahn J-M, Park D-W et al (2016) Similar impact of clopidogrel or ticagrelor on carotid atherosclerotic plaque inflammation. Clin Cardiol 39:646–652. https://doi.org/10.1002/clc.22575

    Article  PubMed  PubMed Central  Google Scholar 

  57. Getz GS, Reardon CA (2016) ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. J Lipid Res 57:758–766. https://doi.org/10.1194/jlr.R067249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. West LE, Steiner T, Judge HM, Francis SE, Storey RF (2014) Vessel wall, not platelet, P2Y12 potentiates early atherogenesis. Cardiovasc Res 102:429–435. https://doi.org/10.1093/cvr/cvu028

    Article  CAS  PubMed  Google Scholar 

  59. Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP (2017) The interplay between angiotensin II, TLR4 and hypertension. Pharmacol Res 120:88–96. https://doi.org/10.1016/j.phrs.2017.03.017

    Article  CAS  PubMed  Google Scholar 

  60. An X, Jiang G, Cheng C, Lv Z, Liu Y, Wang F (2018) Inhibition of platelets by clopidogrel suppressed Ang II-Induced Vascular Inflammation, Oxidative Stress, and Remodeling. J Am Heart Assoc 7:e009600. https://doi.org/10.1161/JAHA.118.009600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Giachini FRC, Osmond DA, Zhang S, Carneiro FS, Lima VV, Inscho EW et al (2010) Clopidogrel, independent of the vascular P2Y12 receptor, improves arterial function in small mesenteric arteries from AngII-hypertensive rats. Clin Sci 118:463–471. https://doi.org/10.1042/CS20090392

    Article  CAS  Google Scholar 

  62. Giachini FR, Leite R, Osmond DA, Lima VV, Inscho EW, Webb RC et al (2014) Anti-platelet therapy with clopidogrel prevents endothelial dysfunction and vascular remodeling in aortas from hypertensive rats. PLoS ONE 9:e91890. https://doi.org/10.1371/journal.pone.0091890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167. https://doi.org/10.1089/ars.2012.5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tarnawski AS (2005) Cellular and molecular mechanisms of gastrointestinal ulcer healing. Dig Dis Sci 50(Suppl 1):S24-33. https://doi.org/10.1007/s10620-005-2803-6

    Article  CAS  PubMed  Google Scholar 

  65. Tarnawski AS, Ahluwalia A, Jones MK (2014) Angiogenesis in gastric mucosa: an important component of gastric erosion and ulcer healing and its impairment in aging. J Gastroenterol Hepatol 29(Suppl 4):112–123. https://doi.org/10.1111/jgh.12734

    Article  CAS  PubMed  Google Scholar 

  66. Luo J-C, Peng Y-L, Chen T-S, Huo T-I, Hou M-C, Huang H-C et al (2016) Clopidogrel inhibits angiogenesis of gastric ulcer healing via downregulation of vascular endothelial growth factor receptor 2. J Formos Med Assoc 115:764–772. https://doi.org/10.1016/j.jfma.2015.07.022

    Article  CAS  PubMed  Google Scholar 

  67. Ludwig S, Wolff T, Ehrhardt C, Wurzer WJ, Reinhardt J, Planz O et al (2004) MEK inhibition impairs influenza B virus propagation without emergence of resistant variants. FEBS Lett 561:37–43. https://doi.org/10.1016/S0014-5793(04)00108-5

    Article  CAS  PubMed  Google Scholar 

  68. Pleschka S, Wolff T, Ehrhardt C, Hobom G, Planz O, Rapp UR et al (2001) Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol 3:301–305. https://doi.org/10.1038/35060098

    Article  CAS  PubMed  Google Scholar 

  69. Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA. (2021) G-protein-coupled receptor and ion channel genes used by influenza virus for replication. J Virol. 95. https://doi.org/10.1128/JVI.02410-20

  70. Pleschka S (2008) RNA viruses and the mitogenic Raf/MEK/ERK signal transduction cascade. Biol Chem 389:1273–1282. https://doi.org/10.1515/BC.2008.145

    Article  CAS  PubMed  Google Scholar 

  71. Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA (2021) Drug repositioning of clopidogrel or triamterene to inhibit influenza virus replication in vitro. PLoS ONE 16:e0259129. https://doi.org/10.1371/journal.pone.0259129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Degirmenci U, Wang M, Hu J (2020) Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells 9 https://doi.org/10.3390/cells9010198

  73. Asati V, Mahapatra DK, Bharti SK (2016) PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem 109:314–341. https://doi.org/10.1016/j.ejmech.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki-Inoue K (2011) Essential in vivo roles of the platelet activation receptor CLEC-2 in tumour metastasis, lymphangiogenesis and thrombus formation. J Biochem 150:127–132. https://doi.org/10.1093/jb/mvr079

    Article  CAS  PubMed  Google Scholar 

  75. Medina C, Jurasz P, Santos-Martinez MJ, Jeong SS, Mitsky T, Chen R et al (2006) Platelet aggregation-induced by caco-2 cells: regulation by matrix metalloproteinase-2 and adenosine diphosphate. J Pharmacol Exp Ther 317:739–745. https://doi.org/10.1124/jpet.105.098384

    Article  CAS  PubMed  Google Scholar 

  76. Danckwardt S, Hentze MW, Kulozik AE (2013) Pathologies at the nexus of blood coagulation and inflammation: thrombin in hemostasis, cancer, and beyond. J Mol Med 91:1257–1271. https://doi.org/10.1007/s00109-013-1074-5

    Article  CAS  PubMed  Google Scholar 

  77. Gresele P, Falcinelli E, Sebastiano M, Momi S (2017) Matrix metalloproteinases and platelet function. Prog Mol Biol Transl Sci 147:133–165. https://doi.org/10.1016/bs.pmbts.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  78. Denslow A, Świtalska M, Jarosz J, Papiernik D, Porshneva K, Nowak M et al (2017) Clopidogrel in a combined therapy with anticancer drugs-effect on tumor growth, metastasis, and treatment toxicity: studies in animal models. PLoS ONE 12:e0188740. https://doi.org/10.1371/journal.pone.0188740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Porshneva K, Papiernik D, Psurski M, Nowak M, Matkowski R, Ekiert M et al (2018) Combination therapy with DETA/NO and clopidogrel inhibits metastasis in murine mammary gland cancer models via improved vasoprotection. Mol Pharm 15:5277–5290. https://doi.org/10.1021/acs.molpharmaceut.8b00781

    Article  CAS  PubMed  Google Scholar 

  80. Rodríguez-Miguel A, García-Rodríguez LA, Gil M, Montoya H, Rodríguez-Martín S, de Abajo FJ (2019) Clopidogrel and low-dose aspirin, alone or together, reduce risk of colorectal cancer. Clin Gastroenterol Hepatol 17:2024-2033.e2. https://doi.org/10.1016/j.cgh.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  81. Leader A, Zelikson-Saporta R, Pereg D, Spectre G, Rozovski U, Raanani P et al (2017) The effect of combined aspirin and clopidogrel treatment on cancer incidence. Am J Med 130:826–832. https://doi.org/10.1016/j.amjmed.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  82. Syberg S, Brandao-Burch A, Patel JJ, Hajjawi M, Arnett TR, Schwarz P et al (2012) Clopidogrel (Plavix), a P2Y12 receptor antagonist, inhibits bone cell function in vitro and decreases trabecular bone in vivo. J Bone Miner Res 27:2373–2386. https://doi.org/10.1002/jbmr.1690

    Article  CAS  PubMed  Google Scholar 

  83. Mediero A, Wilder T, Reddy VSR, Cheng Q, Tovar N, Coelho PG et al (2016) Ticagrelor regulates osteoblast and osteoclast function and promotes bone formation in vivo via an adenosine-dependent mechanism. FASEB J 30:3887–3900. https://doi.org/10.1096/fj.201600616R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lillis T, Veis A, Sakellaridis N, Tsirlis A, Dailiana Z (2019) Effect of clopidogrel in bone healing-experimental study in rabbits. World J Orthop 10:434–445. https://doi.org/10.5312/wjo.v10.i12.434

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nelson TA, Parker WAE, Ghukasyan Lakic T, Westerbergh J, James SK, Siegbahn A, et al. (2021) Differential effect of clopidogrel and ticagrelor on leukocyte count in relation to patient characteristics, biomarkers and genotype: a PLATO substudy. Platelets. 1–7 https://doi.org/10.1080/09537104.2021.1934667

  86. Hamesch K, Borkham-Kamphorst E, Strnad P, Weiskirchen R (2015) Lipopolysaccharide-induced inflammatory liver injury in mice. Lab Anim 49:37–46. https://doi.org/10.1177/0023677215570087

    Article  CAS  PubMed  Google Scholar 

  87. Liu T, Zhang L, Joo D, Sun S-C. (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther. 2 https://doi.org/10.1038/sigtrans.2017.23

  88. Jia Z, Huang Y, Ji X, Sun J, Fu G (2019) Ticagrelor and clopidogrel suppress NF-κB signaling pathway to alleviate LPS-induced dysfunction in vein endothelial cells. BMC Cardiovasc Disord 19:318. https://doi.org/10.1186/s12872-019-01287-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hagiwara S, Iwasaka H, Hasegawa A, Oyama M, Imatomi R, Uchida T et al (2011) Adenosine diphosphate receptor antagonist clopidogrel sulfate attenuates LPS-induced systemic inflammation in a rat model. Shock 35:289–292. https://doi.org/10.1097/SHK.0b013e3181f48987

    Article  CAS  PubMed  Google Scholar 

  90. Liverani E, Rico MC, Yaratha L, Tsygankov AY, Kilpatrick LE, Kunapuli SP (2014) LPS-induced systemic inflammation is more severe in P2Y12 null mice. J Leukoc Biol 95:313–323. https://doi.org/10.1189/jlb.1012518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thomas MR, Outteridge SN, Ajjan RA, Phoenix F, Sangha GK, Faulkner RE et al (2015) Platelet P2Y12 inhibitors reduce systemic inflammation and its prothrombotic effects in an experimental human model. Arterioscler Thromb Vasc Biol 35:2562–2570. https://doi.org/10.1161/ATVBAHA.115.306528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Malek LA, Grabowski M, Spiewak M, Filipiak KJ, Szpotanska M, Imiela T et al (2007) Relation between impaired antiplatelet response to clopidogrel and possible pleiotropic effects. J Thromb Thrombolysis 24:301–305. https://doi.org/10.1007/s11239-007-0026-8

    Article  CAS  PubMed  Google Scholar 

  93. Wihlborg A-K, Malmsjö M, Eyjolfsson A, Gustafsson R, Jacobson K, Erlinge D (2003) Extracellular nucleotides induce vasodilatation in human arteries via prostaglandins, nitric oxide and endothelium-derived hyperpolarising factor. Br J Pharmacol 138:1451–1458. https://doi.org/10.1038/sj.bjp.0705186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Haanes KA, Edvinsson L (2014) Expression and characterization of purinergic receptors in rat middle meningeal artery-potential role in migraine. PLoS ONE 9:e108782. https://doi.org/10.1371/journal.pone.0108782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuszynski DS, Christian BD, Dorrance AM, Lauver DA (2021) Clopidogrel treatment inhibits P2Y2-mediated constriction in the rabbit middle cerebral artery. Eur J Pharmacol 911:174545. https://doi.org/10.1016/j.ejphar.2021.174545

    Article  CAS  PubMed  Google Scholar 

  96. Högberg C, Svensson H, Gustafsson R, Eyjolfsson A, Erlinge D (2010) The reversible oral P2Y12 antagonist AZD6140 inhibits ADP-induced contractions in murine and human vasculature. Int J Cardiol 142:187–192. https://doi.org/10.1016/j.ijcard.2008.12.091

    Article  PubMed  Google Scholar 

  97. Jakubowski A, Chlopicki S, Olszanecki R, Jawien J, Lomnicka M, Dupin JP et al (2005) Endothelial action of thienopyridines and thienopyrimidinones in the isolated guinea pig heart. Prostaglandins Leukot Essent Fatty Acids 72:139–145. https://doi.org/10.1016/j.plefa.2004.10.011

    Article  CAS  PubMed  Google Scholar 

  98. Grzesk G, Kozinski M, Navarese EP, Krzyzanowski M, Grzesk E, Kubica A et al (2012) Ticagrelor, but not clopidogrel and prasugrel, prevents ADP-induced vascular smooth muscle cell contraction: a placebo-controlled study in rats. Thromb Res 130:65–69. https://doi.org/10.1016/j.thromres.2011.12.029

    Article  CAS  PubMed  Google Scholar 

  99. Froldi G, Bertin R, Dorigo P, Montopoli M, Caparrotta L (2011) Endothelium-independent vasorelaxation by ticlopidine and clopidogrel in rat caudal artery. J Pharm Pharmacol 63:1056–1062. https://doi.org/10.1111/j.2042-7158.2011.01313.x

    Article  CAS  PubMed  Google Scholar 

  100. Bledsoe SL, Brown AT, Davis JA, Chen H, Eidt JF, Moursi MM (2005) Effect of clopidogrel on platelet aggregation and intimal hyperplasia following carotid endarterectomy in the rat. Vascular 13:43–49. https://doi.org/10.1258/rsmvasc.13.1.43

    Article  PubMed  Google Scholar 

  101. Bledsoe SL, Barr JC, Fitzgerald RT, Brown AT, Faas FH, Eidt JF et al (2006) Pravastatin and clopidogrel combined inhibit intimal hyperplasia in a rat carotid endarterectomy model. Vasc Endovascular Surg 40:49–57. https://doi.org/10.1177/153857440604000107

    Article  PubMed  Google Scholar 

  102. Erga KS, Seubert CN, Liang HX, Wu L, Shryock JC, Belardinelli L (2000) Role of A(2A)-adenosine receptor activation for ATP-mediated coronary vasodilation in guinea-pig isolated heart. Br J Pharmacol 130:1065–1075. https://doi.org/10.1038/sj.bjp.0703386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Killory BD, Kilbourn KJ, Ollenschleger M (2015) A Novel use of direct platelet application during surgery for clopidogrel-associated intracerebral hemorrhage. World Neurosurg 84(2078):e1-4. https://doi.org/10.1016/j.wneu.2015.08.016

    Article  Google Scholar 

  104. Cordina SM, Hassan AE, Ezzeddine MA (2009) Prevalence and clinical characteristics of intracerebral hemorrhages associated with clopidogrel. J Vasc Interv Neurol 2:136–138

    PubMed  PubMed Central  Google Scholar 

  105. DiNicolantonio JJ, D’Ascenzo F, Tomek A, Chatterjee S, Niazi AK, Biondi-Zoccai G (2013) Clopidogrel is safer than ticagrelor in regard to bleeds: a closer look at the PLATO trial. Int J Cardiol 168:1739–1744. https://doi.org/10.1016/j.ijcard.2013.06.135

    Article  PubMed  Google Scholar 

  106. Darweesh SKL, Leening MJG, Akoudad S, Loth DW, Hofman A, Ikram MA et al (2013) Clopidogrel use is associated with an increased prevalence of cerebral microbleeds in a stroke-free population: the Rotterdam study. J Am Heart Assoc 2:e000359. https://doi.org/10.1161/JAHA.113.000359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ge L, Ouyang X, Ban C, Yu H, Wu Q, Wu H et al (2019) Cerebral microbleeds in patients with ischemic cerebrovascular disease taking aspirin or clopidogrel. Medicine (Baltimore) 98:e14685. https://doi.org/10.1097/MD.0000000000014685

    Article  CAS  Google Scholar 

  108. Vernooij MW, Haag MDM, van der Lugt A, Hofman A, Krestin GP, Stricker BH et al (2009) Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan study. Arch Neurol 66:714–720. https://doi.org/10.1001/archneurol.2009.42

    Article  PubMed  Google Scholar 

  109. Lovelock CE, Cordonnier C, Naka H, Al-Shahi Salman R, Sudlow CLM, Edinburgh Stroke Study Group et al (2010) Antithrombotic drug use, cerebral microbleeds, and intracerebral hemorrhage: a systematic review of published and unpublished studies. Stroke 41:1222–1228. https://doi.org/10.1161/STROKEAHA.109.572594

    Article  CAS  PubMed  Google Scholar 

  110. Lee J, Sohn EH, Oh E, Lee AY (2018) Characteristics of cerebral microbleeds. Dement Neurocognitive Disord 17:73–82. https://doi.org/10.12779/dnd.2018.17.3.73

    Article  Google Scholar 

  111. Ha ACT, Bhatt DL, Rutka JT, Johnston SC, Mazer CD, Verma S (2021) Intracranial hemorrhage during dual antiplatelet therapy: JACC review topic of the week. J Am Coll Cardiol 78:1372–1384. https://doi.org/10.1016/j.jacc.2021.07.048

    Article  CAS  PubMed  Google Scholar 

  112. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT et al (2009) Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360:354–362. https://doi.org/10.1056/NEJMoa0809171

    Article  CAS  PubMed  Google Scholar 

  113. Crescence L, Darbousset R, Caroff E, Hubler F, Riederer MA, Panicot-Dubois L et al (2021) Selatogrel, a reversible P2Y12 receptor antagonist, has reduced off-target interference with haemostatic factors in a mouse thrombosis model. Thromb Res 200:133–140. https://doi.org/10.1016/j.thromres.2021.01.026

    Article  CAS  PubMed  Google Scholar 

  114. André P, DeGuzman F, Haberstock-Debic H, Mills S, Pak Y, Inagaki M et al (2011) Thienopyridines, but not elinogrel, result in off-target effects at the vessel wall that contribute to bleeding. J Pharmacol Exp Ther 338:22–30. https://doi.org/10.1124/jpet.110.178574

    Article  CAS  PubMed  Google Scholar 

  115. Zhang H, Lauver DA, Lucchesi BR, Hollenberg PF (2013) Formation, reactivity, and antiplatelet activity of mixed disulfide conjugates of clopidogrel. Mol Pharmacol 83:848–856. https://doi.org/10.1124/mol.112.084392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang H, Lauver DA, Wang H, Sun D, Hollenberg PF, Chen YE et al (2016) Significant improvement of antithrombotic responses to clopidogrel by use of a novel conjugate as revealed in an arterial model of thrombosis. J Pharmacol Exp Ther 359:11–17. https://doi.org/10.1124/jpet.116.236034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lauver DA, Kuszynski DS, Christian BD, Bernard MP, Teuber JP, Markham BE et al (2019) DT-678 inhibits platelet activation with lower tendency for bleeding compared to existing P2Y12 antagonists. Pharmacol Res Perspect 7:e00509. https://doi.org/10.1002/prp2.509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhu Y, Romero EL, Ren X, Sanca AJ, Du C, Liu C et al (2018) Clopidogrel as a donor probe and thioenol derivatives as flexible promoieties for enabling H2S biomedicine. Nat Commun 9:3952. https://doi.org/10.1038/s41467-018-06373-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Olas B (2015) Hydrogen sulfide in signaling pathways. Clin Chim Acta 439:212–218. https://doi.org/10.1016/j.cca.2014.10.037

    Article  CAS  PubMed  Google Scholar 

  120. Tuffal G, Roy S, Lavisse M, Brasseur D, Schofield J, Delesque Touchard N et al (2011) An improved method for specific and quantitative determination of the clopidogrel active metabolite isomers in human plasma. Thromb Haemost 105:696–705. https://doi.org/10.1160/TH10-09-0582

    Article  CAS  PubMed  Google Scholar 

  121. Zhu Y, Zhou J (2013) In vitro biotransformation studies of 2-oxo-clopidogrel: multiple thiolactone ring-opening pathways further attenuate prodrug activation. Chem Res Toxicol 26:179–190. https://doi.org/10.1021/tx300460k

    Article  CAS  PubMed  Google Scholar 

  122. Pereillo J-M, Maftouh M, Andrieu A, Uzabiaga M-F, Fedeli O, Savi P et al (2002) Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos 30:1288–1295. https://doi.org/10.1124/dmd.30.11.1288

    Article  CAS  PubMed  Google Scholar 

  123. Zhu Y, Zhou J (2012) Identification of the significant involvement and mechanistic role of CYP3A4/5 in clopidogrel bioactivation. ACS Med Chem Lett 3:844–849. https://doi.org/10.1021/ml3002067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. James Luyendyk, Michigan State University, for proofreading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Adam Lauver.

Ethics declarations

Conflicts of interest

Author 1 declares that he/she has no conflict of interest.

Author 2 declares that he/she has no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuszynski, D.S., Lauver, D.A. Pleiotropic effects of clopidogrel. Purinergic Signalling 18, 253–265 (2022). https://doi.org/10.1007/s11302-022-09876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09876-0

Keywords

Navigation