Skip to main content

Advertisement

Log in

Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2’,3’-O-(2,4,6-trinitrophenyl)-adenosine 5’-triphosphate), a nonspecific P2X1–7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4–L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ATP:

Adenosine 5′-triphosphate

AUC:

Area under the curve

BW:

Body weight

DNP:

Diabetic neuropathic pain

DRG:

Dorsal root ganglion

EA:

Electroacupuncture

FBG:

Fasting blood glucose

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IF:

Immunofluorescence

i.p.:

Intraperitoneal

NS:

Normal saline

P2X:

Purinergic ligand-gated cationic channel

RT-qPCRs:

Real-time quantitative polymerase chain reactions

PWL:

Paw withdrawal latency

SD:

Standard deviation

STZ:

Streptozotocin

TNP-ATP:

2’,3’-O-(2,4,6-trinitrophenyl)-adenosine 5’-triphosphate

WB:

Western blotting

References

  1. Tabish SA (2007) Is diabetes becoming the biggest epidemic of the twenty-first century? Int J Health Sci (Qassim) 1(2):V-viii.

  2. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50. https://doi.org/10.1016/j.diabres.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  3. Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M (2016) The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J Trop Med 9(9):825–831. https://doi.org/10.1016/j.apjtm.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  4. Magadmi RM, Alsulaimani MA, Al-Rafiah AR, Ahmad MS, Esmat A (2021) Carvedilol exerts neuroprotective effect on rat model of diabetic neuropathy. Front Pharmacol 12:613634. https://doi.org/10.3389/fphar.2021.613634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith HS, Argoff CE (2011) Pharmacological treatment of diabetic neuropathic pain. Drugs 71(5):557–589. https://doi.org/10.2165/11588940-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  6. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15(7):539–553. https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::aid-dia668>3.0.co;2-s

  7. Coppini DV (2016) Enigma of painful diabetic neuropathy: can we use the basic science, research outcomes and real-world data to help improve patient care and outcomes? Diabet Med 33(11):1477–1482. https://doi.org/10.1111/dme.13089

    Article  CAS  PubMed  Google Scholar 

  8. Impellizzeri D, Peritore AF, Cordaro M, Gugliandolo E, Siracusa R, Crupi R, D’Amico R, Fusco R, Evangelista M, Cuzzocrea S, Di Paola R (2019) The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice. Faseb j 33(10):11364–11380. https://doi.org/10.1096/fj.201900538R

    Article  CAS  PubMed  Google Scholar 

  9. D’Amico R, Impellizzeri D, Cuzzocrea S, Di Paola R (2020) ALIAmides update: palmitoylethanolamide and its formulations on management of peripheral neuropathic pain. Int J Mol Sci 21(15). https://doi.org/10.3390/ijms21155330

  10. Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A (2012) Molecular and functional properties of P2X receptors—recent progress and persisting challenges. Purinergic Signal 8(3):375–417. https://doi.org/10.1007/s11302-012-9314-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102):527–532. https://doi.org/10.1038/nature04886

    Article  CAS  PubMed  Google Scholar 

  12. Bleehen T, Keele CA (1977) Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3(4):367–377. https://doi.org/10.1016/0304-3959(77)90066-5

    Article  CAS  PubMed  Google Scholar 

  13. Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1):162. https://doi.org/10.1038/s41392-021-00553-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He YQ, Lang XQ, Lin L, Ji L, Yuan XY, Chen Q, Ran YM, Chen HS, Li L, Wang JM, Wang ZG, Gregersen H, Zou DW, Liang HP, Yang M (2017) P2X3 receptor-mediated visceral hyperalgesia and neuronal sensitization following exposure to PTSD-like stress in the dorsal root ganglia of rats. Neurogastroenterol Motil 29(3). https://doi.org/10.1111/nmo.12976

  15. Cook SP, Vulchanova L, Hargreaves KM, Elde R, McCleskey EW (1997) Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387(6632):505–508. https://doi.org/10.1038/387505a0

    Article  CAS  PubMed  Google Scholar 

  16. D’Amico R, Fusco R, Siracusa R, Impellizzeri D, Peritore AF, Gugliandolo E, Interdonato L, Sforza AM, Crupi R, Cuzzocrea S, Genovese T, Cordaro M, Di Paola R (2021) Inhibition of P2X7 purinergic receptor ameliorates fibromyalgia syndrome by suppressing NLRP3 pathway. Int J Mol Sci 22(12). https://doi.org/10.3390/ijms22126471

  17. Fei X, He X, Tai Z, Wang H, Qu S, Chen L, Hu Q, Fang J, Jiang Y (2020) Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor expression in dorsal root ganglia. Purinergic Signal 16(4):491–502. https://doi.org/10.1007/s11302-020-09728-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou YF, Ying XM, He XF, Shou SY, Wei JJ, Tai ZX, Shao XM, Liang Y, Fang F, Fang JQ, Jiang YL (2018) Suppressing PKC-dependent membrane P2X3 receptor upregulation in dorsal root ganglia mediated electroacupuncture analgesia in rat painful diabetic neuropathy. Purinergic Signal 14(4):359–369. https://doi.org/10.1007/s11302-018-9617-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Snyder MJ, Gibbs LM, Lindsay TJ (2016) Treating painful diabetic peripheral neuropathy: an update. Am Fam Physician 94(3):227–234

    PubMed  Google Scholar 

  20. Peltier A, Goutman SA, Callaghan BC (2014) Painful diabetic neuropathy Bmj 348:g1799. https://doi.org/10.1136/bmj.g1799

    Article  PubMed  Google Scholar 

  21. Heo I, Shin BC, Cho JH, Ha IH, Hwang EH, Lee JH, Kim KW, Kim MR, Jung SY, Kwon O, Kim NK, Son DW, Shin KM (2021) Multicentre randomised controlled clinical trial of electroacupuncture with usual care for patients with non-acute pain after back surgery. Br J Anaesth 126(3):692–699. https://doi.org/10.1016/j.bja.2020.10.038

    Article  PubMed  Google Scholar 

  22. Arriaga-Pizano L, Gómez-Jiménez DC, Flores-Mejía LA, Pérez-Cervera Y, Solórzano-Mata CJ, López-Macías C, Isibasi A, Torres-Rosas R (2020) Low back pain in athletes can be controlled with acupuncture by a catecholaminergic pathway: clinical trial. Acupunct Med 38(6):388–395. https://doi.org/10.1177/0964528420912251

    Article  PubMed  Google Scholar 

  23. Huang CZ, Li YL, Lan XL, He B, Yang J, Li J (2021) [Electroacupuncture combined with acupoint catgut embedding for postoperative pain after fistulotomy]. Zhen Ci Yan Jiu 46(5):421–425. https://doi.org/10.13702/j.1000-0607.200603

  24. Lv ZT, Shen LL, Zhu B, Zhang ZQ, Ma CY, Huang GF, Yin J, Yu LL, Yu SY, Ding MQ, Li J, Yuan XC, He W, Jing XH, Li M (2019) Effects of intensity of electroacupuncture on chronic pain in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Res Ther 21(1):120. https://doi.org/10.1186/s13075-019-1899-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Manni L, Florenzano F, Aloe L (2011) Electroacupuncture counteracts the development of thermal hyperalgesia and the alteration of nerve growth factor and sensory neuromodulators induced by streptozotocin in adult rats. Diabetologia 54(7):1900–1908. https://doi.org/10.1007/s00125-011-2117-5

    Article  CAS  PubMed  Google Scholar 

  26. Zhou DM, Zhuang Y, Chen WJ, Li W, Miao B (2018) Effects of duloxetine on the toll-like receptor 4 signaling pathway in spinal dorsal horn in a rat model of diabetic neuropathic pain. Pain Med 19(3):580–588. https://doi.org/10.1093/pm/pnx125

    Article  PubMed  Google Scholar 

  27. Wang F, Ma J, Han F, Guo X, Meng L, Sun Y, Jin C, Duan H, Li H, Peng Y (2016) DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model. Sci Rep 6:19396. https://doi.org/10.1038/srep19396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erbaş O, Oltulu F, Yılmaz M, Yavaşoğlu A, Taşkıran D (2016) Neuroprotective effects of chronic administration of levetiracetam in a rat model of diabetic neuropathy. Diabetes Res Clin Pract 114:106–116. https://doi.org/10.1016/j.diabres.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  29. Kolb H (1987) Mouse models of insulin dependent diabetes: low-dose streptozocin-induced diabetes and nonobese diabetic (NOD) mice. Diabetes Metab Rev 3(3):751–778. https://doi.org/10.1002/dmr.5610030308

    Article  CAS  PubMed  Google Scholar 

  30. Wang-Fischer Y, Garyantes T (2018) Improving the reliability and utility of streptozotocin-induced rat diabetic model. J Diabetes Res 2018:8054073. https://doi.org/10.1155/2018/8054073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berger AA, Liu Y, Possoit H, Rogers AC, Moore W, Gress K, Cornett EM, Kaye AD, Imani F, Sadegi K, Varrassi G, Viswanath O, Urits I (2021) Dorsal root ganglion (DRG) and chronic pain. Anesth Pain Med 11(2):e113020. https://doi.org/10.5812/aapm.113020

    Article  PubMed  PubMed Central  Google Scholar 

  32. Esposito MF, Malayil R, Hanes M, Deer T (2019) Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med 20(Suppl 1):S23-s30. https://doi.org/10.1093/pm/pnz012

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zou Y, Yang R, Li L, Xu X, Liang S (2021) Purinergic signaling: a potential therapeutic target for depression and chronic pain. Purinergic Signal. https://doi.org/10.1007/s11302-021-09801-x

  34. Burnstock G (2017) Purinergic signalling: therapeutic developments Front Pharmacol 8:661. https://doi.org/10.3389/fphar.2017.00661

    Article  CAS  PubMed  Google Scholar 

  35. Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110(3):433–454. https://doi.org/10.1016/j.pharmthera.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  36. Zhang WJ, Zhu ZM, Liu ZX (2020) The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull 155:19–28. https://doi.org/10.1016/j.brainresbull.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  37. Duveau A, Bertin E, Boué-Grabot E (2020) Implication of neuronal versus microglial P2X4 receptors in central nervous system disorders. Neurosci Bull 36(11):1327–1343. https://doi.org/10.1007/s12264-020-00570-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krajewski JL (2020) P2X3-containing receptors as targets for the treatment of chronic pain. Neurotherapeutics 17(3):826–838. https://doi.org/10.1007/s13311-020-00934-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oury C, Lecut C, Hego A, Wéra O, Delierneux C (2015) Purinergic control of inflammation and thrombosis: role of P2X1 receptors. Comput Struct Biotechnol J 13:106–110. https://doi.org/10.1016/j.csbj.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  40. Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17(14):5297–5304. https://doi.org/10.1523/jneurosci.17-14-05297.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng XB, Zhang YL, Li Q, Liu YG, Wang XD, Yang BL, Zhu GC, Zhou CF, Gao Y, Liu ZX (2019) Effects of 1,8-cineole on neuropathic pain mediated by P2X2 receptor in the spinal cord dorsal horn. Sci Rep 9(1):7909. https://doi.org/10.1038/s41598-019-44282-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kobayashi K, Yamanaka H, Noguchi K (2013) Expression of ATP receptors in the rat dorsal root ganglion and spinal cord. Anat Sci Int 88(1):10–16. https://doi.org/10.1007/s12565-012-0163-9

    Article  CAS  PubMed  Google Scholar 

  43. Yuan H, Ouyang S, Yang R, Li S, Gong Y, Zou L, Jia T, Zhao S, Wu B, Yi Z, Liu H, Shi L, Li L, Gao Y, Li G, Xu H, Liu S, Zhang C, Liang S (2018) Osthole alleviated diabetic neuropathic pain mediated by the P2X(4) receptor in dorsal root ganglia. Brain Res Bull 142:289–296. https://doi.org/10.1016/j.brainresbull.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  44. Wang A, Shi X, Yu R, Qiao B, Yang R, Xu C (2021) The P2X(7) Receptor is involved in diabetic neuropathic pain hypersensitivity mediated by TRPV1 in the rat dorsal root ganglion. Front Mol Neurosci 14:663649. https://doi.org/10.3389/fnmol.2021.663649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Horvath RJ, DeLeo JA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29(4):998–1005. https://doi.org/10.1523/jneurosci.4595-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao J, Huang Y, Li X, Li L, Yang T, Huang L, Yang L, Jiang H, Li H, Li F (2016) TNP-ATP is beneficial for treatment of neonatal hypoxia-induced hypomyelination and cognitive decline. Neurosci Bull 32(1):99–107. https://doi.org/10.1007/s12264-015-0003-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424(6950):778–783. https://doi.org/10.1038/nature01786

    Article  CAS  PubMed  Google Scholar 

  48. Kasuya G, Yamaura T, Ma XB, Nakamura R, Takemoto M, Nagumo H, Tanaka E, Dohmae N, Nakane T, Yu Y, Ishitani R, Matsuzaki O, Hattori M, Nureki O (2017) Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. Nat Commun 8(1):876. https://doi.org/10.1038/s41467-017-00887-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao F, Xiang HC, Li HP, Jia M, Pan XL, Pan HL, Li M (2018) Electroacupuncture inhibits NLRP3 inflammasome activation through CB2 receptors in inflammatory pain. Brain Behav Immun 67:91–100. https://doi.org/10.1016/j.bbi.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  50. Chen H, Liu TY, Kuai L, Zhu J, Wu CJ, Liu LM (2013) Electroacupuncture treatment for pancreatic cancer pain: a randomized controlled trial. Pancreatology 13(6):594–597. https://doi.org/10.1016/j.pan.2013.10.007

    Article  PubMed  Google Scholar 

  51. He JR, Yu SG, Tang Y, Illes P (2020) Purinergic signaling as a basis of acupuncture-induced analgesia. Purinergic Signal 16(3):297–304. https://doi.org/10.1007/s11302-020-09708-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang Y, Yin HY, Rubini P, Illes P (2016) Acupuncture-induced analgesia: a neurobiological basis in purinergic signaling. Neuroscientist 22(6):563–578. https://doi.org/10.1177/1073858416654453

    Article  PubMed  Google Scholar 

  53. Wang S, Du J, Shao F, Wang W, Sun H, Shao X, Liang Y, Liu B, Fang J, Fang J (2020) Electroacupuncture regulates pain transition by inhibiting the mGluR5-PKCε signaling pathway in the dorsal root ganglia. J Pain Res 13:1471–1483. https://doi.org/10.2147/jpr.s251948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ali U, Apryani E, Wu HY, Mao XF, Liu H, Wang YX (2020) Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL-10/β-endorphin pathway. Biomed Pharmacother 125:109898. https://doi.org/10.1016/j.biopha.2020.109898

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (81804181 to X.F.H. and 81774389 to Y.L.J.), the National Undergraduate Innovation and Entrepreneurship Training Program (202110344013), and the Key Laboratory of Acupuncture and Neurology of Zhejiang Province (2019E10011).

Author information

Authors and Affiliations

Authors

Contributions

Xiao Fen He, Yongliang Jiang, and Jianqiao Fang conceived of and designed the experiments. Yurong Kang, Hanzhi Wang, and Siying Qu performed the animal experiments. Xiao Fen He, Hanzhi Wang, Siying Qu, and Xiang Li performed immunofluorescence. Luhang Chen, Liqian Ma, and Qunqi Hu performed WB and PCR. Boyu Liu, Yi Liang, Junfan Fang, and Xiaomei Shao analyzed the data. Qunqi Hu, Xiaofen He, and Yiqi Ma wrote the manuscripts. Qunqi Hu and Yiqi Ma participated in figures preparations. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian-qiao Fang or Yong-liang Jiang.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Ethical approval

The study was approved by the ethics committee of Zhejiang Chinese Medical University, Hangzhou, China (Approval No. IACUC-20190805–04).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Qq., He, Xf., Ma, Yq. et al. Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7. Purinergic Signalling 19, 29–41 (2023). https://doi.org/10.1007/s11302-022-09844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09844-8

Keywords

Navigation