Skip to main content

Advertisement

Log in

Pannexin 1 channels and ATP release in epilepsy: two sides of the same coin

The contribution of pannexin-1, connexins, and CALHM ATP-release channels to purinergic signaling

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signaling mediated by ATP and its metabolites contributes to various brain physiological processes as well as to several pathological conditions, including neurodegenerative and neurological disorders, such as epilepsy. Among the different ATP release pathways, pannexin 1 channels represent one of the major conduits being primarily activated in pathological contexts. Investigations on in vitro and in vivo models of epileptiform activity and seizures in mice and human tissues revealed pannexin 1 involvement in aberrant network activity and epilepsy, and highlighted that pannexin 1 exerts a complex role. Pannexin 1 can indeed either sustain seizures through release of ATP that can directly activate purinergic receptors, or tune down epileptic activity via ATP-derived adenosine that decreases neuronal excitability. Interestingly, in-depth analysis of the literature unveils that this dichotomy is only apparent, as it depends on the model of seizure induction and the type of evoked epileptiform activity, two factors that can differentially activate pannexin 1 channels and trigger distinct intracellular signaling cascades. Here, we review the general properties and ATP permeability of pannexin 1 channels, and discuss their impact on acute epileptiform activity and chronic epilepsy according to the regime of activity and disease state. These data pave the way for the development of new antiepileptic strategies selectively targeting pannexin 1 channels in a context-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Burnstock G (1990) Overview. Purinergic mechanisms. Ann N Y Acad Sci 603:1–17. https://doi.org/10.1111/j.1749-6632.1990.tb37657.x (discussion 18)

    Article  CAS  PubMed  Google Scholar 

  2. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590. https://doi.org/10.1038/nrd2605

    Article  CAS  PubMed  Google Scholar 

  3. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797. https://doi.org/10.1152/physrev.00043.2006

    Article  CAS  PubMed  Google Scholar 

  4. Unsworth CD, Johnson RG (1990) Acetylcholine and ATP are coreleased from the electromotor nerve terminals of Narcine brasiliensis by an exocytotic mechanism. Proc Natl Acad Sci U S A 87:553–557. https://doi.org/10.1073/pnas.87.2.553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Edwards FA, Gibb AJ (1993) ATP–a fast neurotransmitter. FEBS Lett 325:86–89. https://doi.org/10.1016/0014-5793(93)81419-z

    Article  CAS  PubMed  Google Scholar 

  6. Leybaert L, Braet K, Vandamme W et al (2003) Connexin channels, connexin mimetic peptides and ATP release. Cell Commun Adhes 10:251–257. https://doi.org/10.1080/cac.10.4-6.251.257

    Article  CAS  PubMed  Google Scholar 

  7. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 103:7655–7659. https://doi.org/10.1073/pnas.0601037103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taruno A (2018) ATP release channels. Int J Mol Sci 19. https://doi.org/10.3390/ijms19030808

  9. Yeung AK, Patil CS, Jackson MF (2020) Pannexin-1 in the CNS: emerging concepts in health and disease. J Neurochem 154:468–485. https://doi.org/10.1111/jnc.15004

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez-Arias JC, van der Slagt E, Vecchiarelli HA et al (2021) Purinergic signaling in nervous system health and disease: focus on pannexin 1. Pharmacol Ther 225:107840. https://doi.org/10.1016/j.pharmthera.2021.107840

    Article  CAS  PubMed  Google Scholar 

  11. Freitas-Andrade M, Bechberger JF, MacVicar BA, et al (2017) Pannexin1 knockout and blockade reduces ischemic stroke injury in female, but not in male mice. Oncotarget 8:36973–36983. https://doi.org/10.18632/oncotarget.16937

  12. Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927. https://doi.org/10.1126/science.1126241

    Article  CAS  PubMed  Google Scholar 

  13. Adamson SE, Leitinger N (2014) The role of pannexin1 in the induction and resolution of inflammation. FEBS Lett 588:1416–1422. https://doi.org/10.1016/j.febslet.2014.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett MVL, Garré JM, Orellana JA et al (2012) Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res 1487:3–15. https://doi.org/10.1016/j.brainres.2012.08.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bravo D, Maturana CJ, Pelissier T et al (2015) Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: possible role on chronic pain. Pharmacol Res 101:86–93. https://doi.org/10.1016/j.phrs.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  16. Aquilino MS, Whyte-Fagundes P, Zoidl G, Carlen PL (2017) Pannexin-1 channels in epilepsy. Neurosci Lett. https://doi.org/10.1016/j.neulet.2017.09.004

    Article  PubMed  Google Scholar 

  17. Shan Y, Ni Y, Gao Z (2020) Pannexin-1 channel regulates ATP release in epilepsy. Neurochem Res 45:965–971. https://doi.org/10.1007/s11064-020-02981-9

    Article  CAS  PubMed  Google Scholar 

  18. Jiang T, Long H, Ma Y et al (2013) Altered expression of pannexin proteins in patients with temporal lobe epilepsy. Mol Med Rep 8:1801–1806. https://doi.org/10.3892/mmr.2013.1739

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Zang Z, He J et al (2016) Expression of pannexin 1 and 2 in cortical lesions from intractable epilepsy patients with focal cortical dysplasia. Oncotarget. https://doi.org/10.18632/oncotarget.14317

  20. Pack AM (2019) Epilepsy overview and revised classification of seizures and epilepsies. Continuum (Minneap Minn) 25:306–321. https://doi.org/10.1212/CON.0000000000000707

    Article  Google Scholar 

  21. Devinsky O, Vezzani A, O’Brien TJ et al (2018) Epilepsy Nat Rev Dis Primers 4:18024. https://doi.org/10.1038/nrdp.2018.24

    Article  PubMed  Google Scholar 

  22. Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60. https://doi.org/10.1016/j.pneurobio.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  23. Noebels JL, Avoli M, Rogawski M et al (2010) Jasper’s Basic Mechanisms of the Epilepsies. Workshop Epilepsia 51(Suppl 5):1–5. https://doi.org/10.1111/j.1528-1167.2010.02792.x

    Article  PubMed  Google Scholar 

  24. Sarma AK, Khandker N, Kurczewski L, Brophy GM (2016) Medical management of epileptic seizures: challenges and solutions. Neuropsychiatr Dis Treat 12:467–485. https://doi.org/10.2147/NDT.S80586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Chen Z (2019) An update for epilepsy research and antiepileptic drug development: toward precise circuit therapy. Pharmacol Ther 201:77–93. https://doi.org/10.1016/j.pharmthera.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  26. Rho JM, White HS (2018) Brief history of anti-seizure drug development. Epilepsia Open 3:114–119. https://doi.org/10.1002/epi4.12268

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  Google Scholar 

  28. Manford M (2017) Recent advances in epilepsy. J Neurol 264:1811–1824. https://doi.org/10.1007/s00415-017-8394-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krauss GL, Sperling MR (2011) Treating patients with medically resistant epilepsy. Neurol Clin Pract 1:14–23. https://doi.org/10.1212/CPJ.0b013e31823d07d1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Panchin Y, Kelmanson I, Matz M et al (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:R473-474

    Article  CAS  Google Scholar 

  31. Bruzzone R, Hormuzdi SG, Barbe MT et al (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649. https://doi.org/10.1073/pnas.2233464100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Penuela S, Bhalla R, Gong X-Q et al (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783. https://doi.org/10.1242/jcs.009514

    Article  CAS  PubMed  Google Scholar 

  33. Baranova A, Ivanov D, Petrash N et al (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83:706–716. https://doi.org/10.1016/j.ygeno.2003.09.025

    Article  CAS  PubMed  Google Scholar 

  34. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68. https://doi.org/10.1016/j.febslet.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  35. Boassa D, Nguyen P, Hu J et al (2014) Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane. Front Cell Neurosci 8:468. https://doi.org/10.3389/fncel.2014.00468

    Article  PubMed  Google Scholar 

  36. Ishikawa M, Iwamoto T, Nakamura T et al (2011) Pannexin 3 functions as an ER Ca(2+) channel, hemichannel, and gap junction to promote osteoblast differentiation. J Cell Biol 193:1257–1274. https://doi.org/10.1083/jcb.201101050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruan Z, Orozco IJ, Du J, Lü W (2020) Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature. https://doi.org/10.1038/s41586-020-2357-y

    Article  PubMed  PubMed Central  Google Scholar 

  38. Michalski K, Syrjanen JL, Henze E et al (2020) The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition. Elife 9. https://doi.org/10.7554/eLife.54670

  39. Mou L, Ke M, Song M et al (2020) Structural basis for gating mechanism of Pannexin 1 channel. Cell Res 30:452–454. https://doi.org/10.1038/s41422-020-0313-x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deng Z, He Z, Maksaev G et al (2020) Cryo-EM structures of the ATP release channel pannexin 1. Nat Struct Mol Biol 27:373–381. https://doi.org/10.1038/s41594-020-0401-0

    Article  CAS  PubMed  Google Scholar 

  41. Boassa D, Ambrosi C, Qiu F et al (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282:31733–31743. https://doi.org/10.1074/jbc.M702422200

    Article  CAS  PubMed  Google Scholar 

  42. Dahl G, Locovei S (2006) Pannexin: to gap or not to gap, is that a question? IUBMB Life (Int Union Biochem Mol Biol Life) 58:409–419. https://doi.org/10.1080/15216540600794526

  43. Sahu G, Sukumaran S, Bera AK (2014) Pannexins form gap junctions with electrophysiological and pharmacological properties distinct from connexins. Sci Rep 4:4955. https://doi.org/10.1038/srep04955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Epp AL, Ebert SN, Sanchez-Arias JC et al (2019) A novel motif in the proximal C-terminus of Pannexin 1 regulates cell surface localization. Sci Rep 9:9721. https://doi.org/10.1038/s41598-019-46144-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Ambrosi C, Qiu F et al (2014) The membrane protein Pannexin1 forms two open-channel conformations depending on the mode of activation. Sci Signal 7:ra69. https://doi.org/10.1126/scisignal.2005431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia J, Lim JC, Lu W et al (2012) Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol 590:2285–2304. https://doi.org/10.1113/jphysiol.2012.227983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thompson RJ, Jackson MF, Olah ME et al (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559. https://doi.org/10.1126/science.1165209

    Article  CAS  PubMed  Google Scholar 

  48. Billaud M, Sandilos JK, Isakson BE (2012) Pannexin 1 in the regulation of vascular tone. Trends Cardiovasc Med 22:68–72. https://doi.org/10.1016/j.tcm.2012.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244. https://doi.org/10.1016/j.febslet.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  50. Sandilos JK, Bayliss DA (2012) Physiological mechanisms for the modulation of pannexin 1 channel activity. J Physiol 590:6257–6266. https://doi.org/10.1113/jphysiol.2012.240911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Locovei S, Scemes E, Qiu F et al (2007) Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 581:483–488. https://doi.org/10.1016/j.febslet.2006.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qiu F, Wang J, Dahl G (2012) Alanine substitution scanning of pannexin1 reveals amino acid residues mediating ATP sensitivity. Purinergic Signal 8:81–90. https://doi.org/10.1007/s11302-011-9263-6

    Article  CAS  PubMed  Google Scholar 

  53. Qiu F, Dahl G (2009) A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. Am J Physiol Cell Physiol 296:C250-255. https://doi.org/10.1152/ajpcell.00433.2008

    Article  CAS  PubMed  Google Scholar 

  54. Boyce AKJ, Kim MS, Wicki-Stordeur LE, Swayne LA (2015) ATP stimulates pannexin 1 internalization to endosomal compartments. Biochem J 470:319–330. https://doi.org/10.1042/BJ20141551

    Article  CAS  PubMed  Google Scholar 

  55. Boyce AKJ, Swayne LA (2017) P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization. Biochem J 474:2133–2144. https://doi.org/10.1042/BCJ20170257

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Dahl G (2018) Pannexin1: a multifunction and multiconductance and/or permeability membrane channel. Am J Physiol Cell Physiol 315:C290–C299. https://doi.org/10.1152/ajpcell.00302.2017

    Article  CAS  PubMed  Google Scholar 

  57. Chekeni FB, Elliott MR, Sandilos JK et al (2010) Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature 467:863–867. https://doi.org/10.1038/nature09413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang D, He Y, Muñoz-Planillo R et al (2015) Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43:923–932. https://doi.org/10.1016/j.immuni.2015.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chiu Y-H, Schappe MS, Desai BN, Bayliss DA (2017) Revisiting multimodal activation and channel properties of Pannexin 1. J Gen Physiol 150:19–39. https://doi.org/10.1085/jgp.201711888

    Article  CAS  PubMed  Google Scholar 

  60. Jackson DG, Wang J, Keane RW et al (2014) ATP and potassium ions: a deadly combination for astrocytes. Sci Rep 4:4576. https://doi.org/10.1038/srep04576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dolmatova E, Spagnol G, Boassa D et al (2012) Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 303:H1208-1218. https://doi.org/10.1152/ajpheart.00251.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ransford GA, Fregien N, Qiu F et al (2009) Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir Cell Mol Biol 41:525–534. https://doi.org/10.1165/rcmb.2008-0367OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iglesias R, Dahl G, Qiu F et al (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels.” J Neurosci 29:7092–7097. https://doi.org/10.1523/JNEUROSCI.6062-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kawamura M Jr, Ruskin DN, Masino SA (2010) Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J Neurosci 30:3886–3895. https://doi.org/10.1523/JNEUROSCI.0055-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qiu F, Wang J, Spray DC et al (2011) Two non-vesicular ATP release pathways in the mouse erythrocyte membrane. FEBS Lett 585:3430–3435. https://doi.org/10.1016/j.febslet.2011.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suadicani SO, Iglesias R, Wang J et al (2012) ATP signaling is deficient in cultured pannexin1-null mouse astrocytes. Glia 60:1106–1116. https://doi.org/10.1002/glia.22338

    Article  PubMed  PubMed Central  Google Scholar 

  67. Qu Y, Misaghi S, Newton K et al (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186:6553–6561. https://doi.org/10.4049/jimmunol.1100478

    Article  CAS  PubMed  Google Scholar 

  68. Li S, Bjelobaba I, Yan Z et al (2011) Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology 152:2342–2352. https://doi.org/10.1210/en.2010-1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanner F, Lam L, Nguyen MTX et al (2012) Intrarenal localization of the plasma membrane ATP channel pannexin1. Am J Physiol Renal Physiol 303:F1454-1459. https://doi.org/10.1152/ajprenal.00206.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma W, Compan V, Zheng W et al (2012) Pannexin 1 forms an anion-selective channel. Pflugers Arch 463:585–592. https://doi.org/10.1007/s00424-012-1077-z

    Article  CAS  PubMed  Google Scholar 

  71. Romanov RA, Bystrova MF, Rogachevskaya OA et al (2012) The ATP permeability of pannexin 1 channels in a heterologous system and in mammalian taste cells is dispensable. J Cell Sci 125:5514–5523. https://doi.org/10.1242/jcs.111062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiu Y-H, Jin X, Medina CB et al (2017) A quantized mechanism for activation of pannexin channels. Nat Commun 8:14324. https://doi.org/10.1038/ncomms14324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang J, Dahl G (2010) SCAM analysis of Panx1 suggests a peculiar pore structure. J Gen Physiol 136:515–527. https://doi.org/10.1085/jgp.201010440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Medina CB, Mehrotra P, Arandjelovic S et al (2020) Metabolites released from apoptotic cells act as tissue messengers. Nature 580:130–135. https://doi.org/10.1038/s41586-020-2121-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Narahari AK, Kreutzberger AJ, Gaete PS et al (2021) ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels. Elife 10:e64787. https://doi.org/10.7554/eLife.64787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zoidl G, Petrasch-Parwez E, Ray A et al (2007) Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 146:9–16. https://doi.org/10.1016/j.neuroscience.2007.01.061

    Article  CAS  PubMed  Google Scholar 

  77. Sanchez-Arias JC, Liu M, Choi CSW et al (2019) Pannexin 1 regulates network ensembles and dendritic spine development in cortical neurons. eNeuro 6. https://doi.org/10.1523/ENEURO.0503-18.2019

  78. Flores-Muñoz C, Gómez B, Mery E et al (2020) Acute Pannexin 1 blockade mitigates early synaptic plasticity defects in a mouse model of Alzheimer’s disease. Front Cell Neurosci 14:46. https://doi.org/10.3389/fncel.2020.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Santiago MF, Veliskova J, Patel NK et al (2011) Targeting pannexin1 improves seizure outcome. PLoS One 6:e25178

    Article  CAS  Google Scholar 

  80. Weilinger NL, Lohman AW, Rakai BD et al (2016) Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci. https://doi.org/10.1038/nn.4236

    Article  PubMed  Google Scholar 

  81. Mylvaganam S, Zhang L, Wu C et al (2010) Hippocampal seizures alter the expression of the pannexin and connexin transcriptome. J Neurochem 112:92–102. https://doi.org/10.1111/j.1471-4159.2009.06431.x

    Article  CAS  PubMed  Google Scholar 

  82. He J, Hsiang H-L, Wu C et al (2009) Cellular mechanisms of cobalt-induced hippocampal epileptiform discharges. Epilepsia 50:99–115. https://doi.org/10.1111/j.1528-1167.2008.01767.x

    Article  CAS  PubMed  Google Scholar 

  83. Engel T, Alves M, Sheedy C, Henshall DC (2016) ATPergic signalling during seizures and epilepsy. Neuropharmacology 104:140–153. https://doi.org/10.1016/j.neuropharm.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  84. Abdelmalik PA, Shannon P, Yiu A et al (2007) Hypoglycemic seizures during transient hypoglycemia exacerbate hippocampal dysfunction. Neurobiol Dis 26:646–660. https://doi.org/10.1016/j.nbd.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Xu J, Zhang K et al (2018) The anticonvulsant effects of ketogenic diet on epileptic seizures and potential mechanisms. Curr Neuropharmacol 16:66–70. https://doi.org/10.2174/1570159X15666170517153509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takeuchi F, Nishikata N, Nishimura M et al (2021) Leucine-enriched essential amino acids enhance the antiseizure effects of the ketogenic diet in rats. Front Neurosci 15:637288. https://doi.org/10.3389/fnins.2021.637288

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kawamura M, Ruskin DN, Geiger JD et al (2014) Ketogenic diet sensitizes glucose control of hippocampal excitability. J Lipid Res. https://doi.org/10.1194/jlr.M046755

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lloyd HG, Lindström K, Fredholm BB (1993) Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem Int 23:173–185. https://doi.org/10.1016/0197-0186(93)90095-m

    Article  CAS  PubMed  Google Scholar 

  89. Masino SA, Diao L, Illes P et al (2002) Modulation of hippocampal glutamatergic transmission by ATP is dependent on adenosine a(1) receptors. J Pharmacol Exp Ther 303:356–363. https://doi.org/10.1124/jpet.102.036731

    Article  CAS  PubMed  Google Scholar 

  90. Prochnow N, Abdulazim A, Kurtenbach S et al (2012) Pannexin1 stabilizes synaptic plasticity and is needed for learning. PLoS ONE 7:e51767. https://doi.org/10.1371/journal.pone.0051767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ardiles AO, Flores-Muñoz C, Toro-Ayala G et al (2014) Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice. Front Cell Neurosci 8:326. https://doi.org/10.3389/fncel.2014.00326

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kim J-E, Kang T-C (2011) The P2X7 receptor-pannexin-1 complex decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in mice. J Clin Invest 121:2037–2047. https://doi.org/10.1172/JCI44818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Doná F, Conceição IM, Ulrich H et al (2016) Variations of ATP and its metabolites in the hippocampus of rats subjected to pilocarpine-induced temporal lobe epilepsy. Purinergic Signal 12:295–302. https://doi.org/10.1007/s11302-016-9504-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weilinger NL, Tang PL, Thompson RJ (2012) Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J Neurosci 32:12579–12588. https://doi.org/10.1523/JNEUROSCI.1267-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aquilino MS, Whyte-Fagundes P, Lukewich MK et al (2020) Pannexin-1 deficiency decreases epileptic activity in mice. Int J Mol Sci 21. https://doi.org/10.3390/ijms21207510

  96. Lopatář J, Dale N, Frenguelli BG (2015) Pannexin-1-mediated ATP release from area CA3 drives mGlu5-dependent neuronal oscillations. Neuropharmacology 93C:219–228. https://doi.org/10.1016/j.neuropharm.2015.01.014

    Article  CAS  Google Scholar 

  97. Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10:3898–3902

    Article  CAS  Google Scholar 

  98. Obot P, Velíšek L, Velíšková J, Scemes E (2021) The contribution of astrocyte and neuronal Panx1 to seizures is model and brain region dependent. ASN Neuro 13:17590914211007272. https://doi.org/10.1177/17590914211007273

    Article  Google Scholar 

  99. Cepeda C, Chang JW, Owens GC et al (2015) In Rasmussen encephalitis, hemichannels associated with microglial activation are linked to cortical pyramidal neuron coupling: a possible mechanism for cellular hyperexcitability. CNS Neurosci Ther 21:152–163. https://doi.org/10.1111/cns.12352

    Article  PubMed  Google Scholar 

  100. Ray A, Zoidl G, Weickert S et al (2005) Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci 21:3277–3290. https://doi.org/10.1111/j.1460-9568.2005.04139.x

    Article  PubMed  Google Scholar 

  101. Wellmann M, Álvarez-Ferradas C, Maturana CJ et al (2018) Astroglial Ca2+-dependent hyperexcitability requires P2Y1 purinergic receptors and pannexin-1 channel activation in a chronic model of epilepsy. Front Cell Neurosci 12:446. https://doi.org/10.3389/fncel.2018.00446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lévesque M, Avoli M (2013) The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 37:2887–2899. https://doi.org/10.1016/j.neubiorev.2013.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dossi E, Blauwblomme T, Moulard J et al (2018) Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aar3796

  104. Pallud J, Le Van Quyen M, Bielle F et al (2014) Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Transl Med 6:244ra89. https://doi.org/10.1126/scitranslmed.3008065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huberfeld G, Menendez de la Prida L, Pallud J et al (2011) Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat Neurosci 14:627–634. https://doi.org/10.1038/nn.2790

    Article  CAS  PubMed  Google Scholar 

  106. Bouilleret V, Ridoux V, Depaulis A et al (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89:717–729. https://doi.org/10.1016/s0306-4522(98)00401-1

    Article  CAS  PubMed  Google Scholar 

  107. Clasadonte J, Dong J, Hines DJ, Haydon PG (2013) Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy. Proc Natl Acad Sci U S A 110:17540–17545. https://doi.org/10.1073/pnas.1311967110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scemes E, Velíšek L, Velíšková J (2019) Astrocyte and neuronal Pannexin1 contribute distinctly to seizures. ASN Neuro 11:1759091419833502. https://doi.org/10.1177/1759091419833502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the European Research Council (Consolidator grant #683154) and European Union’s Horizon 2020 research and innovation program (Marie Sklodowska-Curie Innovative Training Networks, grant #722053, EU-GliaPhD) to N.R. and from LFCE and Inserm to E.D.

Author information

Authors and Affiliations

Authors

Contributions

E.D and N.R. wrote the manuscript.

Corresponding authors

Correspondence to Elena Dossi or Nathalie Rouach.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

Elena Dossi declares that she has no conflict of interest.

Nathalie Rouach declares that she has no conflict of interest.

Additional information

Editor: Charles Kennedy

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on The contribution of pannexin-1, connexins and CALHM ATP-release channels to purinergic signalling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dossi, E., Rouach, N. Pannexin 1 channels and ATP release in epilepsy: two sides of the same coin. Purinergic Signalling 17, 533–548 (2021). https://doi.org/10.1007/s11302-021-09818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09818-2

Keywords

Navigation