Skip to main content
Log in

Pannexin-1 Channel Regulates ATP Release in Epilepsy

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

With the deepening of research on epilepsy in recent decades, great progress has been made in the diagnosis and treatment of the disease. However, the clinical outcome remains unsatisfactory due to the confounding symptoms and complications, as well as complex intrinsic pathogenesis. A better understanding of the pathogenesis of epilepsy should be able to hinder the progress of the disease and improve the therapeutic effectiveness. Since the discovery of pannexin (Panx), unremitting efforts on the study of this gap junction protein family member have revealed its role in participating in the expression of various physiopathological processes. Among them, the activation or inhibition of Panx channel has been shown to regulate the release of adenosine triphosphate (ATP) and other signals, which is very important for the onset and control of nervous system diseases including epilepsy. In this article, we summarize the factors influencing the regulation of Panx channel opening, hoping to find a way to interfere with the activation or inhibition of Panx channel that regulates the signal transduction of ATP and other factors so as to control the progression of epilepsy and improve the quality of life of epileptic patients who fail to respond to the existing medical therapies and those at risk of surgical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. The L (2019) From wonder and fear: make epilepsy a global health priority. Lancet 393:612

    Google Scholar 

  2. Yang Y, Zhou M, Niu Y, Li C, Cao R, Wang B, Yan P, Ma Y, Xiang J (2018) Epileptic seizure prediction based on permutation entropy. Front Comput Neurosci 12:55

    PubMed  PubMed Central  Google Scholar 

  3. Thijs RD, Surges R, O'Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393:689–701

    PubMed  Google Scholar 

  4. Lopes MA, Perani S, Yaakub SN (2019) Revealing epilepsy type using a computational analysis of interictal EEG. Sci Rep 9:10169

    PubMed  PubMed Central  Google Scholar 

  5. Yao I, Stein ES, Maggio N (2019) Cannabinoids, hippocampal excitability and efficacy for the treatment of epilepsy. Pharmacol Ther 202:32–39

    CAS  PubMed  Google Scholar 

  6. Wang Y, Chen Z (2019) An update for epilepsy research and antiepileptic drug development: toward precise circuit therapy. Pharmacol Ther 201:77–93

    CAS  PubMed  Google Scholar 

  7. Hogg MC, Raoof R, El Naggar H, Monsefi N, Delanty N, O’Brien DF, Bauer S, Rosenow F, Henshall DC, Prehn JH (2019) Elevation in plasma tRNA fragments precede seizures in human epilepsy. J Clin Investig 129:2946–2951

    PubMed  Google Scholar 

  8. Shestopalov VI, Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–394

    CAS  PubMed  Google Scholar 

  9. Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A, Farady CJ, Pelczar P, Broz P (2019) Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. https://doi.org/10.15252/embj.2019101638

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mousseau M, Burma NE (2018) Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Sci Adv 4:eass9846

    Google Scholar 

  11. Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83:706–716

    CAS  PubMed  Google Scholar 

  12. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    CAS  PubMed  Google Scholar 

  13. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    CAS  PubMed  Google Scholar 

  14. Dahl G (2015) ATP release through pannexon channels. Philos Trans R Soc Lond Ser B Biol Sci. https://doi.org/10.1098/rstb.2014.0191

    Article  Google Scholar 

  15. Zhou KQ, Green CR, Bennet L, Gunn AJ, Davidson JO (2019) The role of connexin and pannexin channels in perinatal brain injury and inflammation. Front Physiol 10:141

    PubMed  PubMed Central  Google Scholar 

  16. Zhang Z, Lei Y, Yan C, Mei X, Jiang T, Ma Z, Wang Q (2019) Probenecid relieves cerebral dysfunction of sepsis by inhibiting pannexin 1-dependent ATP release. Inflammation 42:1082–1092

    CAS  PubMed  Google Scholar 

  17. Manford M (2017) Recent advances in epilepsy. J Neurol 264:1811–1824

    PubMed  PubMed Central  Google Scholar 

  18. Nabbout R, Camfield CS, Andrade DM, Arzimanoglou A, Chiron C, Cramer JA, French JA, Kossoff E, Mula M, Camfield PR (2017) Treatment issues for children with epilepsy transitioning to adult care. Epilepsy Behav 69:153–160

    PubMed  Google Scholar 

  19. Benardo LS (2004) Gap junctions in epileptogenesis: chicken or egg? Epilepsy Curr 4:80–81

    PubMed  PubMed Central  Google Scholar 

  20. Laura MC, Xochitl FP, Anne S, Alberto MV (2015) Analysis of connexin expression during seizures induced by 4-aminopyridine in the rat hippocampus. J Biomed Sci 22:69

    PubMed  PubMed Central  Google Scholar 

  21. Wellmann M, Alvarez-Ferradas C, Maturana CJ, Saez JC, Bonansco C (2018) Astroglial Ca(2+)-dependent hyperexcitability requires P2Y1 purinergic receptors and pannexin-1 channel activation in a chronic model of epilepsy. Front Cell Neurosci 12:446

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    CAS  PubMed  Google Scholar 

  23. Engel T, Alves M, Sheedy C, Henshall DC (2016) ATPergic signalling during seizures and epilepsy. Neuropharmacology 104:140–153

    CAS  PubMed  Google Scholar 

  24. Nielsen BS, Toft-Bertelsen TL (2019) Pannexin 1 activation and inhibition is permeant-selective. J Physiol 598:361–379

    Google Scholar 

  25. Molica F, Meens MJ, Pelli G, Hautefort A, Emre Y, Imhof BA, Fontana P, Scemes E, Morel S, Kwak BR (2019) Selective inhibition of Panx1 channels decreases hemostasis and thrombosis in vivo. Thromb Res 183:56–62

    CAS  PubMed  Google Scholar 

  26. Douanne T, Andre-Gregoire G, Trillet K, Thys A (2019) Pannexin-1 limits the production of proinflammatory cytokines during necroptosis. EMBO Rep 20:e47840

    CAS  PubMed  Google Scholar 

  27. Scemes E, Veliskova J (2019) Exciting and not so exciting roles of pannexins. Neurosci Lett 695:25–31

    CAS  PubMed  Google Scholar 

  28. Scemes E, Velisek L, Veliskova J (2019) Astrocyte and Neuronal Pannexin1 Contribute Distinctly to Seizures. ASN neuro 11:1759091419833502

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dossi E, Blauwblomme T (2018) Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aar3796

    Article  PubMed  Google Scholar 

  30. Mylvaganam S, Zhang L, Wu C, Zhang ZJ, Samoilova M, Eubanks J, Carlen PL, Poulter MO (2010) Hippocampal seizures alter the expression of the pannexin and connexin transcriptome. J Neurochem 112:92–102

    CAS  PubMed  Google Scholar 

  31. Li S, Zang Z, He J, Chen X, Yu S, Pei Y, Hou Z, An N, Yang H, Zhang C, Liu S (2017) Expression of pannexin 1 and 2 in cortical lesions from intractable epilepsy patients with focal cortical dysplasia. Oncotarget 8:6883–6895

    PubMed  Google Scholar 

  32. Jiang T, Long H, Ma Y, Long L, Li Y, Li F, Zhou P, Yuan C, Xiao B (2013) Altered expression of pannexin proteins in patients with temporal lobe epilepsy. Mol Med Rep 8:1801–1806

    CAS  PubMed  Google Scholar 

  33. Larsson M, Sawada K, Morland C, Hiasa M, Ormel L, Moriyama Y, Gundersen V (2012) Functional and anatomical identification of a vesicular transporter mediating neuronal ATP release. Cereb Cortex 22:1203–1214

    PubMed  Google Scholar 

  34. Verkhratsky A, Burnstock G (2014) Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. BioEssays 36:697–705

    CAS  PubMed  Google Scholar 

  35. Gonzalez Leiva DF (2019) Highlight report: role of the ATP-releasing Panx channels in liver fibrosis. EXCLI J 18:8–9

    PubMed  PubMed Central  Google Scholar 

  36. Aquilino MS, Whyte-Fagundes P, Zoidl G, Carlen PL (2019) Pannexin-1 channels in epilepsy. Neurosci Lett 695:71–75

    CAS  PubMed  Google Scholar 

  37. Wang J, Jackson DG, Dahl G (2018) Cationic control of Panx1 channel function. Am J Physiol Cell Physiol 315:C279–C289

    CAS  PubMed  Google Scholar 

  38. Li G, Zhang Q, Hong J, Ritter JK, Li PL (2018) Inhibition of pannexin-1 channel activity by adiponectin in podocytes: role of acid ceramidase activation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1246–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gov N, Safran SA (2005) Red blood cell shape and fluctuations: cytoskeleton confinement and ATP activity. J Biol Phys 31:453–464

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Samuels SE, Lipitz JB, Dahl G, Muller KJ (2010) Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury. J General Physiol 136:425–442

    CAS  Google Scholar 

  41. Guan NN, Sharma N, Hallen-Grufman K, Jager EWH, Svennersten K (2018) The role of ATP signalling in response to mechanical stimulation studied in T24 cells using new microphysiological tools. J Cell Mol Med 22:2319–2328

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sato M, Furuya T, Kimura M, Kojima Y, Tazaki M, Sato T, Shibukawa Y (2015) Intercellular odontoblast communication via ATP mediated by pannexin-1 channel and phospholipase C-coupled receptor activation. Front Physiol 6:326

    PubMed  PubMed Central  Google Scholar 

  43. Liu X, Wang C, Fujita T, Malmstrom HS, Nedergaard M, Ren YF, Dirksen RT (2015) External dentin stimulation induces ATP release in human teeth. J Dent Res 94:1259–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sridharan M, Adderley SP, Bowles EA, Egan TM, Stephenson AH, Ellsworth ML, Sprague RS (2010) Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. Am J Physiol Heart Circ Physiol 299:H1146–H1152

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Boyce AKJ, Epp AL, Nagarajan A, Swayne LA (2018) Transcriptional and post-translational regulation of pannexins. Biochim Biophys Acta Biomembr 1860:72–82

    CAS  PubMed  Google Scholar 

  47. Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282:31733–31743

    CAS  PubMed  Google Scholar 

  48. Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783

    CAS  PubMed  Google Scholar 

  49. Penuela S, Bhalla R, Nag K, Laird DW (2009) Glycosylation regulates pannexin intermixing and cellular localization. Mol Biol Cell 20:4313–4323

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiu YH, Jin X, Medina CB, Leonhardt SA, Kiessling V, Bennett BC, Shu S, Tamm LK, Yeager M, Ravichandran KS, Bayliss DA (2017) A quantized mechanism for activation of pannexin channels. Nat Commun 8:14324

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchez-Pupo RE, Johnston D, Penuela S (2018) N-glycosylation regulates pannexin 2 localization but is not required for interacting with pannexin 1. Int J Mol Sci 19:1837

    PubMed Central  Google Scholar 

  52. Barbe MT, Monyer H, Bruzzone R (2006) Cell-cell communication beyond connexins: the pannexin channels. Physiology (Bethesda MD) 21:103–114

    CAS  Google Scholar 

  53. Weilinger NL, Tang PL, Thompson RJ (2012) Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J Neurosci 32:12579–12588

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J physiol Cell Physiol 295:C752–C760

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S, Lipton SA (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78:596–614

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Irwin C, Roberts W, Naseem KM (2009) Nitric oxide inhibits platelet adhesion to collagen through cGMP-dependent and independent mechanisms: the potential role for S-nitrosylation. Platelets 20:478–486

    CAS  PubMed  Google Scholar 

  57. Prochnow N, Hoffmann S, Dermietzel R, Zoidl G (2009) Replacement of a single cysteine in the fourth transmembrane region of zebrafish pannexin 1 alters hemichannel gating behavior. Exp Brain Res 199:255–264

    PubMed  Google Scholar 

  58. Li S, Bjelobaba I, Stojilkovic SS (2018) Interactions of Pannexin1 channels with purinergic and NMDA receptor channels. Biochim Biophys Acta Biomembr 1860:166–173

    CAS  PubMed  Google Scholar 

  59. Boyce AKJ, Swayne LA (2017) P2 × 7 receptor cross-talk regulates ATP-induced pannexin 1 internalization. Biochem J 474:2133–2144

    CAS  PubMed  Google Scholar 

  60. Bravo D, Maturana CJ, Pelissier T, Hernandez A, Constandil L (2015) Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: possible role on chronic pain. Pharmacol Res 101:86–93

    CAS  PubMed  Google Scholar 

  61. Sibarov DA, Antonov SM (2018) Calcium-dependent desensitization of NMDA receptors. Biochem Biokhim 83:1173–1183

    CAS  Google Scholar 

  62. Bading H (2017) Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J Exp Med 214:569–578

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Salmi M, Bolbos R, Bauer S, Minlebaev M, Burnashev N, Szepetowski P (2018) Transient microstructural brain anomalies and epileptiform discharges in mice defective for epilepsy and language-related NMDA receptor subunit gene Grin2a. Epilepsia 59:1919–1930

    CAS  PubMed  Google Scholar 

  64. Isakson BE, Thompson RJ (2014) Pannexin-1 as a potentiator of ligand-gated receptor signaling. Channels 8:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Weilinger NL, Lohman AW, Rakai BD, Ma EM, Bialecki J, Maslieieva V, Rilea T, Bandet MV, Ikuta NT, Scott L, Colicos MA, Teskey GC, Winship IR, Thompson RJ (2016) Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 19:432–442

    CAS  PubMed  Google Scholar 

  66. Boyce AKJ, Swayne LA (2017) P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization. Biochem J 474:2133–2144

    CAS  PubMed  Google Scholar 

  67. Jackson DG, Wang J, Keane RW, Scemes E, Dahl G (2014) ATP and potassium ions: a deadly combination for astrocytes. Sci Rep 4:4576

    PubMed  PubMed Central  Google Scholar 

  68. Garre JM, Yang G, Bukauskas FF (2016) FGF-1 triggers pannexin-1 hemichannel opening in spinal astrocytes of rodents and promotes inflammatory responses in acute spinal cord slices. J Neurosci 36:4785–4801

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C (2000) ATP inhibits glutamate synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J Pharmacol Exp Ther 293:172–179

    CAS  PubMed  Google Scholar 

  70. Barsotti C, Ipata PL (2004) Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts. Int J Biochem Cell Biol 36:2214–2225

    CAS  PubMed  Google Scholar 

  71. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    CAS  PubMed  Google Scholar 

  72. Barrie AP, Nicholls DG (1993) Adenosine A1 receptor inhibition of glutamate exocytosis and protein kinase C-mediated decoupling. J Neurochem 60:1081–1086

    CAS  PubMed  Google Scholar 

  73. Kawamura M Jr, Ruskin DN, Masino SA (2010) Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J Neurosci 30:3886–3895

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Y., Ni, Y. & Gao, Z. Pannexin-1 Channel Regulates ATP Release in Epilepsy. Neurochem Res 45, 965–971 (2020). https://doi.org/10.1007/s11064-020-02981-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02981-9

Keywords

Navigation