Skip to main content
Log in

Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

As an ancient analgesia therapy, acupuncture has been practiced worldwide nowadays. A good understanding of its mechanisms will offer a promise for its rational and wider application. As the first station of pain sensation, peripheral sensory ganglia express pain-related P2X receptors that are involved in the acupuncture analgesia mechanisms transduction pathway. While the role of their endogenous ligand, extracellular ATP (eATP), remains less studied. This work attempted to clarify whether acupuncture modulated eATP levels in the peripheral sensory nerve system during its analgesia process. Male Sprague–Dawley rats underwent acute inflammatory pain by injecting Complete Freund’s Adjuvant in the unilateral ankle joint for 2 days. A twenty-minute acupuncture was applied to ipsilateral Zusanli acupoint. Thermal hyperalgesia and tactile allodynia were assessed on bilateral hind paws to evaluate the analgesic effect. eATP of bilateral isolated lumbar 4-5 dorsal root ganglia (DRGs) and sciatic nerves were determined by luminescence assay. Nucleotidases NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were measured by real-time PCR to explore eATP hydrolysis process. Our results revealed that acute inflammation induced bilateral thermal hyperalgesia and ipsilateral tactile allodynia, which were accompanied by increased eATP levels and higher mechano-sensitivity of bilateral DRGs and decreased eATP levels of bilateral sciatic nerves. Acupuncture exerted anti-nociception on bilateral hind paws, reversed the increased eATP and mechanosensitivity of bilateral DRGs, and restored the decreased eATP of bilateral sciatic nerves. NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were inconsistently modulated during this period. These observations indicate that eATP metabolism of peripheral sensory nerve system was simultaneously regulated during acupuncture analgesia, which might open a new frontier for acupuncture research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ADO:

Adenosine

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ARL67156:

6-N,N-Diethyl-β-γ-dibromomethylene-D-adenosine-5′-triphosphate

ATP:

Adenosine triphosphate

CFA:

Complete Freund’s Adjuvant

DRG:

Dorsal root ganglia

EAP:

Electric acupuncture

eATP:

Extracellular ATP

exo-ATP:

Exogenous ATP

L-L:

Luciferin-luciferase

Nt5e:

Ecto-5′-nucleotidase

NTPDases:

Nucleoside triphosphate diphosphohydrolases

P2 receptors:

Purinergic receptors

PAP:

Prostatic acid phosphatase

PS:

Physiological solution

PWL:

Paw withdraw latency

PWT:

Paw withdraw threshold

References

  1. Gereau RW, Sluka KA, Maixner W, Savage SR, Price TJ, Murinson BB, Sullivan MD, Fillingim RB (2014) A pain research agenda for the 21st century. J Pain 15(12):1203–1214. https://doi.org/10.1016/j.jpain.2014.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhao ZQ (2008) Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85(4):355–375. https://doi.org/10.1016/j.pneurobio.2008.05.004

    Article  PubMed  Google Scholar 

  3. Tang Y, Yin HY, Liu J, Rubini P, Illes P (2019) P2x receptors and acupuncture analgesia. Brain Res Bull 151:144–152. https://doi.org/10.1016/j.brainresbull.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  4. Tang Y, Yin HY, Rubini P, Illes P (2016) Acupuncture-induced analgesia: a neurobiological basis in purinergic signaling. Neuroscientist 22(6):563–578. https://doi.org/10.1177/1073858416654453

    Article  PubMed  Google Scholar 

  5. Tsuda M, Tozaki-Saitoh H, Inoue K (2010) Pain and purinergic signaling. Brain Res Rev 63(1-2):222–232. https://doi.org/10.1016/j.brainresrev.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  6. Sawynok J (2016) Adenosine receptor targets for pain. Neuroscience 338:1–18. https://doi.org/10.1016/j.neuroscience.2015.10.031

    Article  CAS  PubMed  Google Scholar 

  7. Burnstock G (2006) Purinergic p2 receptors as targets for novel analgesics. Pharmacol Ther 110(3):433–454. https://doi.org/10.1016/j.pharmthera.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  8. Barragán-Iglesias P, Mendoza-Garcés L, Pineda-Farias JB, Solano-Olivares V, Rodríguez-Silverio J, Flores-Murrieta FJ, Granados-Soto V, HIJPB R-G (2015) Participation of peripheral p2y1, p2y6 and p2y11 receptors in formalin-induced inflammatory pain in rats. Behavior 128:23–32. https://doi.org/10.1016/j.pbb.2014.11.001

    Article  CAS  Google Scholar 

  9. Burnstock G (2009) Acupuncture: a novel hypothesis for the involvement of purinergic signalling. Med Hypotheses 73(4):470–472. https://doi.org/10.1016/j.mehy.2009.05.031 S0306-9877(09)00397-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Zheng YW, Wu MY, Shen XY, Wang LN (2020) Application of unrestrained conscious rats with acute inflammatory ankle pain to study of acupuncture analgesia. Zhen Ci Yan Jiu 45(8):645–651. https://doi.org/10.13702/j.1000-0607.190703

    Article  PubMed  Google Scholar 

  11. Burkey TH, Hingtgen CM, Vasko MR (2004) Isolation and culture of sensory neurons from the dorsal-root ganglia of embryonic or adult rats. Methods Mol Med 99:189–202. https://doi.org/10.1385/1-59259-770-X:189

    Article  PubMed  Google Scholar 

  12. Matsuka Y, Ono T, Iwase H, Mitrirattanakul S, Omoto KS, Cho T, Lam YY, Snyder B, Spigelman I (2008) Altered atp release and metabolism in dorsal root ganglia of neuropathic rats. Mol Pain 4:66. https://doi.org/10.1186/1744-8069-4-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen D, Shen X, Schwarz W, Grygorczyk R, Wang L (2020) P2y13 and p2x7 receptors modulate mechanically induced adenosine triphosphate release from mast cells. Exp Dermatol 29(5):499–508. https://doi.org/10.1111/exd.14093

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Chen Y, Wang C, Huang LY (2007) Neuronal somatic atp release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 104(23):9864–9869. https://doi.org/10.1073/pnas.0611048104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fields RD (2011) Imaging single photons and intrinsic optical signals for studies of vesicular and non-vesicular atp release from axons. Front Neuroanat 5:11. https://doi.org/10.3389/fnana.2011.00032

    Article  CAS  Google Scholar 

  16. Wang L, Hu L, Grygorczyk R, Shen X, Schwarz W (2015) Modulation of extracellular atp content of mast cells and drg neurons by irradiation: studies on underlying mechanism of low-level-laser therapy. Mediators Inflamm 2015:630361–630369. https://doi.org/10.1155/2015/630361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signalling 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vongtau HO, Lavoie EG, Sévigny J, Molliver DC (2011) Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience 193:387–398. https://doi.org/10.1016/j.neuroscience.2011.07.044

    Article  CAS  PubMed  Google Scholar 

  19. Ma L, Thu T, Ren Y, Dirksen RT, Liu X (2016) Neuronal ntpdase3 mediates extracellular atp degradation in trigeminal nociceptive pathway. Plos One 11(10):1–14. https://doi.org/10.1371/journal.pone.0164028

    Article  CAS  Google Scholar 

  20. Liu X, Yu L, Wang Q, Pelletier J, Fausther M, Sevigny J, Malmstrom HS, Dirksen RT, Ren Y-F (2012) Expression of ecto-atpase ntpdase2 in human dental pulp. J Dental Res 91(3):261–267. https://doi.org/10.1177/0022034511431582

    Article  CAS  Google Scholar 

  21. Niu X, Zhang M, Liu Z, Bai L, Sun C, Wang S, Wang X, Chen Z, Chen H, Tian J (2016) Interaction of acupuncture treatment and manipulation laterality modulated by the default mode network. Mol Pain 13:14. https://doi.org/10.1177/1744806916683684

    Article  Google Scholar 

  22. Lai H-C, Lin Y-W, Hsieh C-L (2019) Acupuncture-analgesia-mediated alleviation of central sensitization. Evid-Based Complement Alternat Med 2019:13–13. https://doi.org/10.1155/2019/6173412

    Article  Google Scholar 

  23. Shenker N, Haigh R, Roberts E, Mapp P, Harris N, Blake D (2003) A review of contralateral responses to a unilateral inflammatory lesion. Rheumatology 42(11):1279–1286. https://doi.org/10.1093/rheumatology/keg397

    Article  CAS  PubMed  Google Scholar 

  24. Shenker NG, Haigh RC, Mapp PI, Harris N, Blake DR (2008) Contralateral hyperalgesia and allodynia following intradermal capsaicin injection in man. Rheumatology 47(9):1417–1421. https://doi.org/10.1093/rheumatology/ken251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miura K, Ohara T, Zeredo JL, Okada Y, Toda K, Sumikawa K (2007) Effects of traditional "juci" (contralateral acupuncture) on orofacial nociceptive behavior in the rat. J Anesth 21(1):31–36. https://doi.org/10.1007/s00540-006-0443-4

    Article  PubMed  Google Scholar 

  26. Yan C-Q, Huo J-W, Wang X, Zhou P, Zhang Y-N, J-l L, Kim M, Shao J-K, Hu S-Q, Wang L-Q, Liu C-Z (2020) Different degree centrality changes in the brain after acupuncture on contralateral or ipsilateral acupoint in patients with chronic shoulder pain: a resting-state fmri study. Neural Plast 2020(4):1–11. https://doi.org/10.1155/2020/5701042

    Article  Google Scholar 

  27. Todorov LD, Mihaylova-Todorova S, Westfall TD, Sneddon P, Kennedy C, Bjur RA, Westfall DP (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387(6628):76–79. https://doi.org/10.1038/387076a0

    Article  CAS  PubMed  Google Scholar 

  28. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29. https://doi.org/10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  29. Tan H, Tumilty S, Chapple C, Liu L, McDonough S, Yin H, Yu S, Baxter GD (2019) Understanding acupoint sensitization: a narrative review on phenomena, potential mechanism, and clinical application. Evid Based Complement Alternat Med 2019:6064358–6064359. https://doi.org/10.1155/2019/6064358

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bai F, Ma Y, Guo H, Li Y, Xu F, Zhang M, Dong H, Deng J, Xiong L (2019) Spinal cord glycine transporter 2 mediates bilateral st35 acupoints sensitization in rats with knee osteoarthritis. Evid Based Complement Alternat Med 2019:7493286–7493217. https://doi.org/10.1155/2019/7493286

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen S, Miao Y, Nan Y, Wang Y, Zhao Q, He E, Sun Y, Zhao J (2015) The study of dynamic characteristic of acupoints based on the primary dysmenorrhea patients with the tenderness reflection on diji (sp 8). Evid Based Complement Alternat Med 2015:158012–158019. https://doi.org/10.1155/2015/158012

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao YH, Li CW, Wang JY, Tan LH, Duanmu CL, Jing XH, Chang XR, Liu JL (2016) Effect of electroacupuncture on the cervicospinal p2x7 receptor/fractalkine/cx3cr1 signaling pathway in a rat neck-incision pain model. Purinergic Signalling 13(2):215–225. https://doi.org/10.1007/s11302-016-9552-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Braun N, Sevigny J, Robson SC, Hammer K, Hanani M, Zimmermann H (2004) Association of the ecto-atpase ntpdase2 with glial cells of the peripheral nervous system. Glia 45(2):124–132. https://doi.org/10.1002/glia.10309

    Article  PubMed  Google Scholar 

  34. Hassan AHS, Ableitner A, Stein C, Herz A (1993) Inflammation of the rat paw enhances axonal-transport of opioid receptors in the sciatic-nerve and increases their density in the inflamed tissue. Neuroscience 55(1):185–195. https://doi.org/10.1016/0306-4522(93)90465-r

    Article  CAS  PubMed  Google Scholar 

  35. Takano T, Chen X, Luo F, Fujita T, Ren Z, Goldman N, Zhao Y, Markman JD, Nedergaard M (2012) Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 13(12):1215–1223. https://doi.org/10.1016/j.jpain.2012.09.012

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y, Wang F, Han X, Chen JF, Schnermann J, Takano T, Bekar L, Tieu K, Nedergaard M (2010) Adenosine a1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13(7):883–888. https://doi.org/10.1038/nn.2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang M, Wang X, Xing B, Yang H, Sa Z, Zhang D, Yao W, Yin N, Xia Y, Ding G (2018) Critical roles of trpv2 channels, histamine h1 and adenosine a1 receptors in the initiation of acupoint signals for acupuncture analgesia. Sci Rep 8(1):6523–6533. https://doi.org/10.1038/s41598-018-24654-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sa Z-Y, Huang M, Zhang D, Ding G-H (2013) Relationship between regional mast cell activity and peripheral nerve discharges during manual acupuncture stimulation of “zusanli” (st 36). Zhen Ci Yan Jiu 38(2):118–122 CNKI:SUN:XCYJ.0.2013-02-010

    PubMed  Google Scholar 

  39. Y-l Y, Tang J, Li L (2017) Effect of electroacupuncture on expression of brain-derived neurotrophic factor, nerve growth factor, and growth-associated protein-43 in rats with sciatic nerve injury. J Anhui Tradit Chin Med College 4:51–55. https://doi.org/10.3969/j.issn.2095-7246.2017.04.016

    Article  Google Scholar 

  40. Joseph SM, Buchakjian MR, Dubyak GR (2003) Colocalization of atp release sites and ecto-atpase activity at the extracellular surface of human astrocytes. J Biol Chem 278(26):23331–23342. https://doi.org/10.1074/jbc.M302680200

    Article  CAS  PubMed  Google Scholar 

  41. Brisevac D, Adzic M, Laketa D, Parabucki A, Milosevic M, Lavrnja I, Bjelobaba I, Sevigny J, Kipp M, Nedeljkovic N (2015) Extracellular atp selectively upregulates ecto-nucleoside triphosphate diphosphohydrolase 2 and ecto-5'-nucleotidase by rat cortical astrocytes in vitro. J Mol Neurosci 57(3):452–462. https://doi.org/10.1007/s12031-015-0601-y

    Article  CAS  PubMed  Google Scholar 

  42. Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, Voikar V, Vihko P (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60(1):111–122. https://doi.org/10.1016/j.neuron.2008.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sowa NA, Taylor-Blake B, Zylka MJ (2010) Ecto-5'-nucleotidase (cd73) inhibits nociception by hydrolyzing amp to adenosine in nociceptive circuits. J Neurosci 30(6):2235–2244. https://doi.org/10.1523/JNEUROSCI.5324-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sowa NA, Voss MK, Zylka MJ (2010) Recombinant ecto-5′-nucleotidase (cd73) has long lasting antinociceptive effects that are dependent on adenosine a1 receptor activation. Mol Pain 6(20):1–8. https://doi.org/10.1186/1744-8069-6-20

    Article  CAS  Google Scholar 

  45. Gerevich Z, Illes P (2004) P2y receptors and pain transmission. Purinergic Signalling 1(1):3–10. https://doi.org/10.1007/s11302-004-4740-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song XM, Xu XH, Zhu J, Guo Z, Li J, He C, Burnstock G, Yuan H, Xiang ZJPS (2015) Up-regulation of p2x7 receptors mediating proliferation of schwann cells after sciatic nerve injury. Purinergic Signalling 11(2):203–213. https://doi.org/10.1007/s11302-015-9445-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang S, Wang X, Yan C-Q, Hu S-Q, Huo J-W, Wang Z-Y, Zhou P, Liu C-H, Liu C-Z (2018) Different mechanisms of contralateral- or ipsilateral-acupuncture to modulate the brain activity in patients with unilateral chronic shoulder pain: a pilot fmri study. J Pain Res 2018(11):505–514. https://doi.org/10.2147/JPR.S152550

    Article  Google Scholar 

  48. Hurt JK, Zylka MJ (2012) Papupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 8(28):1–9. https://doi.org/10.1186/1744-8069-8-28

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Natural Science Foundation of China (Grant No. 81574076, to L-N W, 8159950026 to D Z). We like to thank Prof. Ryszard Grygorczyk (Université de Montréal, Montreal, Canada) and Prof. Wolfgang Schwarz (Goethe-University, Frankfurt, Germany) for revising the paper.

Code availability

Not applicable.

Funding

National Natural Science Foundation of China (Grant No. 81574076, to L-N W and 8159950026 to D Z).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization by Li-Na WANG and Xue-Yong SHEN; data collection by Dan SHEN and Ya-Wen ZHENG; data analysis by Dan SHEN; figure formation by Di ZHANG; data interpretation by Li-Na WANG; first manuscript writing by Dan SHEN; manuscript revision by Li-Na WANG and Xue-Yong SHEN. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xue-Yong Shen or Li-Na Wang.

Ethics declarations

Ethical approval

All experimental protocols were approved by the Animal Care Committee of Shanghai University of Traditional Chinese Medicine (Shanghai, China) (No SZY201807008).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, D., Zheng, YW., Zhang, D. et al. Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signalling 17, 411–424 (2021). https://doi.org/10.1007/s11302-021-09777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09777-8

Keywords

Navigation