Skip to main content
Log in

Roles of the lateral fenestration residues of the P2X4 receptor that contribute to the channel function and the deactivation effect of ivermectin

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

P2X receptors are cation-permeable ion channels gated by extracellular adenosine triphosphate (ATP). Available crystallographic data suggest that ATP-binding ectodomain is connected to the transmembrane pore domain by three structurally conserved linker regions, which additionally frame the lateral fenestrations through which permeating ions enter the channel pore. The role of these linker regions in relaying the conformational change evoked by ATP binding of the ectodomain to the pore-forming transmembrane domain has not been investigated systematically. Using P2X4R as our model, we employed alanine and serine replacement mutagenesis to determine how the side chain structure of these linker regions influences gating. The mutants Y54A/S, F198A/S, and W259A/S all trafficked normally to the plasma membrane of transfected HEK293 cells but were poorly responsive to ATP. Nevertheless, the function of the F198A/S mutants could be recovered by pretreatment with the known positive allosteric modulator of P2X4R, ivermectin (IVM), although the IVM sensitivity of this mutant was significantly impaired relative to wild type. The functional mutants Y195A/S, F200A/S, and F330A/S exhibited ATP sensitivities identical to wild type, consistent with these side chains playing no role in ATP binding. However, Y195A/S, F200A/S, and F330A/S all displayed markedly changed sensitivity to the specific effects of IVM on current deactivation, suggesting that these positions influence allosteric modulation of gating. Taken together, our data indicate that conserved amino acids within the regions linking the ectodomain with the pore-forming transmembrane domain meaningfully contribute to signal transduction and channel gating in P2X receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TM:

Transmembrane segment

IVM:

Ivermectin

EC50 :

Concentration for half-maximal response

τ off :

Deactivation time constant

I max :

The maximal amplitude of the current activated by ATP

HEK293:

Human embryonic kidney 293

References

  1. Surprenant A, Buell G, North RA (1995) P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci 18:224–229

    Article  CAS  PubMed  Google Scholar 

  2. Newbolt A, Stoop R, Virginio C, Surprenant A, North RA, Buell G, Rassendren F (1998) Membrane topology of an ATP-gated ion channel (P2X receptor). J Biol Chem 273:15177–15182

    Article  CAS  PubMed  Google Scholar 

  3. Shrivastava AN, Triller A, Sieghart W, Sarto-Jackson I (2011) Regulation of GABA(A) receptor dynamics by interaction with purinergic P2X(2) receptors. J Biol Chem 286:14455–14468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505

    Article  CAS  PubMed  Google Scholar 

  5. Migita K, Haines WR, Voigt MM, Egan TM (2001) Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X(2) receptor. J Biol Chem 276:30934–30941

    Article  CAS  PubMed  Google Scholar 

  6. Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389:749–753

    Article  CAS  PubMed  Google Scholar 

  7. Khakh BS, Henderson G (1998) ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol Pharmacol 54:372–378

    CAS  PubMed  Google Scholar 

  8. Shatarat A, Dunn WR, Ralevic V (2014) Raised tone reveals ATP as a sympathetic neurotransmitter in the porcine mesenteric arterial bed. Purinergic Signalling 10:639–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Buell G, Lewis C, Collo G, North RA, Surprenant A (1996) An antagonist-insensitive P2X receptor expressed in epithelia and brain. Embo J 15:55–62

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Seguela P, Haghighi A, Soghomonian JJ, Cooper E (1996) A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J Neurosci 16:448–455

    CAS  PubMed  Google Scholar 

  11. Li GH, Lee EM, Blair D, Holding C, Poronnik P, Cook DI, Barden JA, Bennett MR (2000) The distribution of P2X receptor clusters on individual neurons in sympathetic ganglia and their redistribution on agonist activation. J Biol Chem 275:29107–29112

    Article  CAS  PubMed  Google Scholar 

  12. Burnstock G (2014) Purinergic signalling in endocrine organs. Purinergic Signalling 10:189–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Khakh BS, Proctor WR, Dunwiddie TV, Labarca C, Lester HA (1999) Allosteric control of gating and kinetics at P2X(4) receptor channels. J Neurosci 19:7289–7299

    CAS  PubMed  Google Scholar 

  14. Norenberg W, Sobottka H, Hempel C, Plotz T, Fischer W, Schmalzing G, Schaefer M (2012) Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors. Br J Pharmacol 167:48–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ejere H, Schwartz E, Wormald R (2001) Ivermectin for onchocercal eye disease (river blindness). The Cochrane Database Syst Rev 1, CD002219

    Google Scholar 

  16. Dent JA, Davis MW, Avery L (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. Embo J 16:5867–5879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Samways DSK, Khakh BS, Egan TM (2012) Allosteric modulation of Ca2+ flux in ligand-gated cation channel (P2X4) by actions on lateral portals. J Biol Chem 287:7594–7602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Samways DSK, Khakh BS, Dutertre S, Egan TM (2011) Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors). Proc Natl Acad Sci U S A 108:13800–13805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kracun S, Chaptal V, Abramson J, Khakh BS (2010) Gated access to the pore of a P2X receptor: structural implications for closed–open transitions. J Biol Chem 285:10110–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kawate T, Robertson JL, Li M, Silberberg SD, Swartz KJ (2011) Ion access pathway to the transmembrane pore in P2X receptor channels. J Gen Physiol 137:579–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jelinkova I, Yan ZH, Liang ZD, Moonat S, Teisinger J, Stojilkovic SS, Zemkova H (2006) Identification of P2X4 receptor-specific residues contributing to the ivermectin effects on channel deactivation. Biochem Biophys Res Commun 349:619–625

    Article  CAS  PubMed  Google Scholar 

  23. Roberts JA, Evans RJ (2004) ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. J Biol Chem 279:9043–55

    Article  CAS  PubMed  Google Scholar 

  24. Zemkova H, Jelinkova I, Vavra V, Jindrichova M, Obsil T, Zemkova HW, Stojilkovic SS (2008) Identification of P2X(4) receptor transmembrane residues contributing to channel gating and interaction with ivermectin. Pflugers Arch Eur J Physiol 456:939–950

    Article  Google Scholar 

  25. Rokic MB, Stojilkovic SS, Zemkova H (2014) Structural and functional properties of the rat P2X4 purinoreceptor extracellular vestibule during gating. Front Cell Neurosci. doi:10.3389/fncel.2014.00003

    PubMed Central  PubMed  Google Scholar 

  26. Du J, Dong H, Zhou HX (2012) Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations. Proc Natl Acad Sci U S A 109:4140–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Roberts JA, Allsopp RC, El Ajouz S, Vial C, Schmid R, Young MT, Evans RJ (2012) Agonist binding evokes extensive conformational changes in the extracellular domain of the ATP-gated human P2X1 receptor ion channel. Proc Natl Acad Sci U S A 109:4663–4667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rokic MB, Stojilkovic SS, Vavra V, Kuzyk P, Tvrdonova V, Zemkova H (2013) Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor. PloS One 8:e59411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jiang LH, Rassendren F, Spelta V, Surprenant A, North RA (2001) Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X(2) receptor. J Biol Chem 276:14902–8

    Article  CAS  PubMed  Google Scholar 

  30. Nakazawa K, Sawa H, Ojima H, Ishii-Nozawa R, Takeuchi K, Ohno Y (2002) Size of side-chain at channel pore mouth affects Ca(2+) block of P2X(2) receptor. Eur J Pharmacol 449:207–11

    Article  CAS  PubMed  Google Scholar 

  31. Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485:207–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tvrdonova V, Rokic MB, Stojilkovic SS, Zemkova H (2014) Identification of functionally important residues of the rat P2X4 receptor by alanine scanning mutagenesis of the dorsal fin and left flipper domains. PloS One 9:e112902

    Article  PubMed Central  PubMed  Google Scholar 

  33. Priel A, Silberberg SD (2004) Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol 123:281–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zemkova H, Khadra A, Rokic MB, Tvrdonova V, Sherman A, Stojilkovic SS (2014) Allosteric regulation of the P2X4 receptor channel pore dilation. Arch Eur J Physiol. doi:10.1007/s00424-014-1546-7

    Google Scholar 

  35. Silberberg SD, Li MF, Swartz KJ (2007) Ivermectin interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels. Neuron 54:263–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Terrance M. Egan for providing the P2X4 plasmid.

This study was supported by the National Natural Science Foundation of China (81171037/H0903) and the National Key Basic Research Program of China (973 Program) (2012CB966400).

Conflict of interest

The authors declare that they have no conflict of interest.

Authorship contributions

Participated in Research design: Gao, Li.

Conducted experiments: Gao, Yu.

Contributed new reagents or analytic tools: Xu, Zhang, Ma.

Performed data analysis: Liu, Jie.

Wrote or contributed to the writing of the manuscript: Gao, Samways, Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Yu, Q., Xu, H. et al. Roles of the lateral fenestration residues of the P2X4 receptor that contribute to the channel function and the deactivation effect of ivermectin. Purinergic Signalling 11, 229–238 (2015). https://doi.org/10.1007/s11302-015-9448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9448-5

Key words

Navigation