Skip to main content

Advertisement

Log in

Molecular mechanism for opioid dichotomy: bidirectional effect of μ-opioid receptors on P2X3 receptor currents in rat sensory neurones

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Here, we describe a molecular switch associated with opioid receptors-linked signalling cascades that provides a dual opioid control over P2X3 purinoceptor in sensory neurones. Leu-enkephalin inhibited P2X3-mediated currents with IC50 ~10 nM in ~25 % of small nociceptive rat dorsal root ganglion (DRG) neurones. In contrast, in neurones pretreated with pertussis toxin leu-enkephalin produced stable and significant increase of P2X3 currents. All effects of opioid were abolished by selective μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), nonselective inhibitor naloxone, and by PLC inhibitor U73122. Thus, we discovered a dual link between purinoceptors and μ-opioid receptors: the latter exert both inhibitory (pertussis toxin-sensitive) and stimulatory (pertussis toxin-insensitive) actions on P2X3 receptors through phospholipase C (PLC)-dependent pathways. This dual opioid control of P2X3 receptors may provide a molecular explanation for dichotomy of opioid therapy. Pharmacological control of this newly identified facilitation/inhibition switch may open new perspectives for the adequate medical use of opioids, the most powerful pain-killing agents known today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC:

adenylate cyclase

[Ca2+]i :

free cytosolic Ca2+ concentration

cAMP:

cyclic adenosine monophosphate

DRG:

dorsal root ganglion

CTOP:

D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2

DAG:

diacylglycerol

Enk:

leu-enkephalin

GPCRs:

G protein-coupled receptors

InsP3 :

inositol 1,4,5-trisphosphate

meATP:

α,β–methylene-ATP

MORs:

μ-opioid receptors

PKA:

protein kinase A

PKC:

protein kinase C

PLC:

phospholipase C

PTX:

pertussis toxin

TRPV1:

transient receptor potential vanilloid 1

References

  1. Wang HB, Zhao B, Zhong YQ, Li KC, Li ZY, Wang Q, Lu YJ, Zhang ZN, He SQ, Zheng HC, Wu SX, Hokfelt TG, Bao L, Zhang X (2010) Coexpression of δ- and μ-opioid receptors in nociceptive sensory neurons. Proc Natl Acad Sci U S A 107:13117–13122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Burnstock G (1996) A unifying purinergic hypothesis for the initiation of pain. Lancet 347:1604–1605

    Article  CAS  PubMed  Google Scholar 

  3. Burnstock G (2013) Purinergic mechanisms and pain—an update. Eur J Pharmacol 716:24–40

    Article  CAS  PubMed  Google Scholar 

  4. Prado FC, Araldi D, Vieira AS, Oliveira-Fusaro MC, Tambeli CH, Parada CA (2013) Neuronal P2X3 receptor activation is essential to the hyperalgesia induced by prostaglandins and sympathomimetic amines released during inflammation. Neuropharmacology 67:252–258

    Article  CAS  PubMed  Google Scholar 

  5. Atkinson TJ, Schatman ME, Fudin J (2014) The damage done by the war on opioids: the pendulum has swung too far. J Pain Res 7:265–268

    PubMed Central  PubMed  Google Scholar 

  6. Sehgal N, Smith HS, Manchikanti L (2011) Peripherally acting opioids and clinical implications for pain control. Pain Physician 14:249–258

    PubMed  Google Scholar 

  7. Reichert JA, Daughters RS, Rivard R, Simone DA (2001) Peripheral and preemptive opioid antinociception in a mouse visceral pain model. Pain 89:221–227

    Article  CAS  PubMed  Google Scholar 

  8. Shannon HE, Lutz EA (2002) Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats. Neuropharmacology 42:253–261

    Article  CAS  PubMed  Google Scholar 

  9. Stein C, Schafer M, Machelska H (2003) Attacking pain at its source: new perspectives on opioids. Nat Med 9:1003–1008

    Article  CAS  PubMed  Google Scholar 

  10. Hanna MH, Elliott KM, Fung M (2005) Randomized, double-blind study of the analgesic efficacy of morphine-6-glucuronide versus morphine sulfate for postoperative pain in major surgery. Anesthesiology 102:815–821

    Article  CAS  PubMed  Google Scholar 

  11. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592

    CAS  PubMed  Google Scholar 

  12. Murthy KS, Makhlouf GM (1996) Opioid mu, delta, and kappa receptor-induced activation of phospholipase C-β 3 and inhibition of adenylyl cyclase is mediated by Gi2 and Go in smooth muscle. Mol Pharmacol 50:870–877

    CAS  PubMed  Google Scholar 

  13. Endres-Becker J, Heppenstall PA, Mousa SA, Labuz D, Oksche A, Schafer M, Stein C, Zollner C (2007) μ-opioid receptor activation modulates transient receptor potential vanilloid 1 (TRPV1) currents in sensory neurons in a model of inflammatory pain. Mol Pharmacol 71:12–18

    Article  CAS  PubMed  Google Scholar 

  14. Vetter I, Wyse BD, Monteith GR, Roberts-Thomson SJ, Cabot PJ (2006) The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol Pain 2:22

    Article  PubMed Central  PubMed  Google Scholar 

  15. Marker CL, Lujan R, Loh HH, Wickman K (2005) Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of μ- and δ- but not κ-opioids. J Neurosci 25:3551–3559

    Article  CAS  PubMed  Google Scholar 

  16. Ocana M, Cendan CM, Cobos EJ, Entrena JM, Baeyens JM (2004) Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol 500:203–219

    Article  CAS  PubMed  Google Scholar 

  17. Schroeder JE, McCleskey EW (1993) Inhibition of Ca2+ currents by a μ-opioid in a defined subset of rat sensory neurons. J Neurosci 13:867–873

    CAS  PubMed  Google Scholar 

  18. Wu ZZ, Chen SR, Pan HL (2004) Differential sensitivity of N- and P/Q-type Ca2+ channel currents to a mu opioid in isolectin B4-positive and -negative dorsal root ganglion neurons. J Pharmacol Exp Ther 311:939–947

    Article  CAS  PubMed  Google Scholar 

  19. McGaraughty S, Honore P, Wismer CT, Mikusa J, Zhu CZ, McDonald HA, Bianchi B, Faltynek CR, Jarvis MF (2005) Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain. Br J Pharmacol 146:180–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Stein C (2013) Opioids, sensory systems and chronic pain. Eur J Pharmacol 716(1-3):179–187

    Article  CAS  PubMed  Google Scholar 

  21. Stein C, Lang LJ (2009) Peripheral mechanisms of opioid analgesia. Curr Opin Pharmacol 9:3–8

    Article  CAS  PubMed  Google Scholar 

  22. Angst MS, Clark JD (2006) Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 104:570–587

    Article  CAS  PubMed  Google Scholar 

  23. DuPen A, Shen D, Ersek M (2007) Mechanisms of opioid-induced tolerance and hyperalgesia. Pain Manag Nurs 8:113–121

    Article  PubMed  Google Scholar 

  24. Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L (2011) A comprehensive review of opioid-induced hyperalgesia. Pain Physician 14:145–161

    PubMed  Google Scholar 

  25. Chakrabarti S, Gintzler AR (2007) Phosphorylation of Galphas influences its association with the micro-opioid receptor and is modulated by long-term morphine exposure. Mol Pharmacol 72:753–760

    Article  CAS  PubMed  Google Scholar 

  26. Chakrabarti S, Regec A, Gintzler AR (2005) Biochemical demonstration of mu-opioid receptor association with Gsalpha: enhancement following morphine exposure. Brain Res Mol Brain Res 135:217–224

    Article  CAS  PubMed  Google Scholar 

  27. Pankratov Y, Lalo UV, Dashkin AN, Krishtal A (2001) Heterogeneity of the functional expression of P2X3 and P2X2/3 receptors in the primary nociceptive neurons of rat. Neurochem Res 26:993–1000

    Article  CAS  PubMed  Google Scholar 

  28. Shapovalov G, Gkika D, Devilliers M, Kondratskyi A, Gordienko D, Busserolles J, Bokhobza A, Eschalier A, Skryma R, Prevarskaya N (2013) Opiates modulate thermosensation by internalizing cold receptor TRPM8. Cell Rep 4:504–515

    Article  CAS  PubMed  Google Scholar 

  29. North RA (2004) P2X3 receptors and peripheral pain mechanisms. J Physiol Lond 554:301–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Pratt EB, Brink TS, Bergson P, Voigt MM, Cook SP (2005) Use-dependent inhibition of P2X3 receptors by nanomolar agonist. J Neurosci 25:7359–7365

    Article  CAS  PubMed  Google Scholar 

  31. Khmyz V, Maximyuk O, Teslenko V, Verkhratsky A, Krishtal O (2008) P2X3 receptor gating near normal body temperature. Pflugers Arch 456:339–347

    Article  CAS  PubMed  Google Scholar 

  32. Grishin EV, Savchenko GA, Vassilevski AA, Korolkova YV, Boychuk YA, Viatchenko-Karpinski VY, Nadezhdin KD, Arseniev AS, Pluzhnikov KA, Kulyk VB, Voitenko NV, Krishtal OO (2010) Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Ann Neurol 67:680–683

    CAS  PubMed  Google Scholar 

  33. Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (1994) Pharmacological characterization of the cloned κ-, δ-, and μ-opioid receptors. Mol Pharmacol 45:330–334

    CAS  PubMed  Google Scholar 

  34. Chizhmakov I, Yudin Y, Mamenko N, Prudnikov I, Tamarova Z, Krishtal O (2005) Opioids inhibit purinergic nociceptors in the sensory neurons and fibres of rat via a G protein-dependent mechanism. Neuropharmacology 48:639–647

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez-Blazquez P, Gomez-Serranillos P, Garzon J (2001) Agonists determine the pattern of G-protein activation in μ-opioid receptor-mediated supraspinal analgesia. Brain Res Bull 54:229–235

    Article  CAS  PubMed  Google Scholar 

  36. Szucs M, Boda K, Gintzler AR (2004) Dual effects of DAMGO [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin and CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) on adenylyl cyclase activity: implications for μ-opioid receptor Gs coupling. J Pharmacol Exp Ther 310:256–262

    Article  PubMed  Google Scholar 

  37. Mo G, Bernier LP, Zhao Q, Chabot-Dore AJ, Ase AR, Logothetis D, Cao CQ, Seguela P (2009) Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors. Mol Pain 5:47

    Article  PubMed Central  PubMed  Google Scholar 

  38. Mo G, Peleshok JC, Cao CQ, Ribeiro-da-Silva A, Seguela P (2013) Control of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons. Mol Pharmacol 83:640–647

    Article  CAS  PubMed  Google Scholar 

  39. Park CK, Bae JH, Kim HY, Jo HJ, Kim YH, Jung SJ, Kim JS, Oh SB (2010) Substance P sensitizes P2X3 in nociceptive trigeminal neurons. J Dent Res 89:1154–1159

    Article  CAS  PubMed  Google Scholar 

  40. Paukert M, Osteroth R, Geisler HS, Brandle U, Glowatzki E, Ruppersberg JP, Grunder S (2001) Inflammatory mediators potentiate ATP-gated channels through the P2X3 subunit. J Biol Chem 276:21077–21082

    Article  CAS  PubMed  Google Scholar 

  41. Brown DA, Yule DI (2007) Protein kinase C regulation of P2X3 receptors is unlikely to involve direct receptor phosphorylation. Biochim Biophys Acta 1773:166–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Delmas P, Crest M, Brown DA (2004) Functional organization of PLC signaling microdomains in neurons. Trends Neurosci 27:41–47

    Article  CAS  PubMed  Google Scholar 

  43. Fujita A, Cheng J, Tauchi-Sato K, Takenawa T, Fujimoto T (2009) A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc Natl Acad Sci U S A 106:9256–9261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Newton PM, Kim JA, McGeehan AJ, Paredes JP, Chu K, Wallace MJ, Roberts AJ, Hodge CW, Messing RO (2007) Increased response to morphine in mice lacking protein kinase C epsilon. Genes Brain Behav 6:329–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Galeotti N, Stefano GB, Guarna M, Bianchi E, Ghelardini C (2006) Signaling pathway of morphine induced acute thermal hyperalgesia in mice. Pain 123:294–305

    Article  CAS  PubMed  Google Scholar 

  46. Birdsong WT, Arttamangkul S, Clark MJ, Cheng K, Rice KC, Traynor JR, Williams JT (2013) Increased agonist affinity at the μ-opioid receptor induced by prolonged agonist exposure. J Neurosci 33:4118–4127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ukrainian Fund for Fundamental Studies (grant DFFD F46.2/001) and by NIH (grant NIH 1R03TW008228-01A1).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexei Verkhratsky or Oleg Krishtal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhmakov, I., Kulyk, V., Khasabova, I. et al. Molecular mechanism for opioid dichotomy: bidirectional effect of μ-opioid receptors on P2X3 receptor currents in rat sensory neurones. Purinergic Signalling 11, 171–181 (2015). https://doi.org/10.1007/s11302-015-9443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9443-x

Keywords

Navigation