Skip to main content
Log in

Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

A major issue in regenerative medicine is the control of progenitor cell mobilisation. Apoptosis has been reported as playing a role in cell plasticity, and it has been recently shown that apoptosis is necessary for organ and appendage regeneration. In this context, we explore its possible mode of action in progenitor cell recruitment during adult regeneration in zebrafish. Here, we show that apoptosis inhibition impairs blastema formation and nerve growth, both of which can be restored by exogenous adenosine acting through its A2B receptor. Moreover, adenosine increases the number of progenitor cells. Purinergic signalling is therefore an early and essential event in the pathway from lesion to blastema formation and provides new targets for manipulating cell plasticity in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24:525–549

    Article  CAS  PubMed  Google Scholar 

  2. Galliot B, Ghila L (2010) Cell plasticity in homeostasis and regeneration. Mol Reprod Dev 77(10):837–855

    Article  CAS  PubMed  Google Scholar 

  3. Nakatani Y, Kawakami A, Kudo A (2007) Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ 49(2):145–154

    Article  PubMed  Google Scholar 

  4. Echeverri K, Tanaka EM (2002) Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298(5600):1993–1996

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka EM (2003) Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev 13(5):497–501

    Article  CAS  PubMed  Google Scholar 

  6. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):60–65

    Article  CAS  PubMed  Google Scholar 

  7. Cordeiro JV, Jacinto A (2013) The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol 14(4):249–262

    Article  CAS  Google Scholar 

  8. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17(2):279–289

    Article  CAS  PubMed  Google Scholar 

  9. King RS, Newmark PA (2012) The cell biology of regeneration. J Cell Biol 196(5):553–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gauron C, Rampon C, Bouzaffour M, Ipendey E, Teillon J, Volovitch M, Vriz S (2013) Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 3:2084

    Article  PubMed Central  PubMed  Google Scholar 

  11. Vriz S, Reiter S, Galliot B (2014) Cell death: a program to regenerate. Curr Top Dev Biol 108:121–151

    Article  CAS  PubMed  Google Scholar 

  12. Singer M (1974) Trophic functions of the neuron. VI. Other trophic systems. Neurotrophic control of limb regeneration in the newt. Ann N Y Acad Sci 228:308–322

    Article  CAS  PubMed  Google Scholar 

  13. Geraudie J, Singer M (1985) Necessity of an adequate nerve supply for regeneration of the amputated pectoral fin in the teleost Fundulus. J Exp Zool 234(3):367–374

    Article  CAS  PubMed  Google Scholar 

  14. Kumar A, Brockes JP (2012) Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci 35(11):691–699

    Article  CAS  PubMed  Google Scholar 

  15. Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11(10):710–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sanchez Alvarado A, Yamanaka S (2014) Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 157(1):110–119

    Article  CAS  PubMed  Google Scholar 

  17. Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M (2007) Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 301(1):62–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Morata G, Shlevkov E, Perez-Garijo A (2011) Mitogenic signaling from apoptotic cells in Drosophila. Dev Growth Differ 53(2):168–176

    Article  PubMed  Google Scholar 

  19. Ishida T, Nakajima T, Kudo A, Kawakami A (2010) Phosphorylation of Junb family proteins by the Jun N-terminal kinase supports tissue regeneration in zebrafish. Dev Biol 340(2):468–479

    Article  CAS  PubMed  Google Scholar 

  20. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3(110):ra13

    PubMed Central  PubMed  Google Scholar 

  21. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O’Sullivan B, He Z, Peng Y, Tan AC, Zhou L, Shen J, Han G, Wang XJ, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li CY (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17(7):860–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mao P, Smith L, Xie W, Wang M (2013) Dying endothelial cells stimulate proliferation of malignant glioma cells via a caspase 3-mediated pathway. Oncol Lett 5(5):1615–1620

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467(7317):863–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Verkhratsky A, Burnstock G (2014) Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays

  25. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483

    Article  CAS  PubMed  Google Scholar 

  26. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):299–309

    Article  CAS  PubMed  Google Scholar 

  27. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29(39):5346–5358

    Article  CAS  PubMed  Google Scholar 

  28. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110(23):9415–9420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Huang WC, Yang CC, Chen IH, Liu YM, Chang SJ, Chuang YJ (2013) Treatment of glucocorticoids inhibited early immune responses and impaired cardiac repair in adult zebrafish. PLoS One 8(6):e66613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Li L, Yan B, Shi YQ, Zhang WQ, Wen ZL (2012) Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J Biol Chem 287(30):25353–25360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Deli T, Csernoch L (2008) Extracellular ATP and cancer: an overview with special reference to P2 purinergic receptors. Pathol Oncol Res 14(3):219–231

    Article  CAS  PubMed  Google Scholar 

  33. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mondal BC, Mukherjee T, Mandal L, Evans CJ, Sinenko SA, Martinez-Agosto JA, Banerjee U (2011) Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147(7):1589–1600

    Article  CAS  PubMed  Google Scholar 

  35. Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, German MS, Stainier DY (2012) Adenosine signaling promotes regeneration of pancreatic beta cells in vivo. Cell Metab 15(6):885–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Grau B, Eilert JC, Munck S, Harz H (2008) Adenosine induces growth-cone turning of sensory neurons. Purinergic Signal 4(4):357–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lecca D, Ceruti S, Fumagalli M, Abbracchio MP (2012) Purinergic trophic signalling in glial cells: functional effects and modulation of cell proliferation, differentiation, and death. Purinergic Signal 8(3):539–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Burnstock G (2013) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 986:1–12

    Article  CAS  PubMed  Google Scholar 

  39. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29

    Article  CAS  PubMed  Google Scholar 

  40. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318(5851):772–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Masse K, Dale N (2012) Purines as potential morphogens during embryonic development. Purinergic Signal 8(3):503–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Dal Santo G, Conterato GM, Barcellos LJ, Rosemberg DB, Piato AL (2014) Acute restraint stress induces an imbalance in the oxidative status of the zebrafish brain. Neurosci Lett 558:103–108

    Article  CAS  PubMed  Google Scholar 

  43. Piato AL, Rosemberg DB, Capiotti KM, Siebel AM, Herrmann AP, Ghisleni G, Vianna MR, Bogo MR, Lara DR, Bonan CD (2011) Acute restraint stress in zebrafish: behavioral parameters and purinergic signaling. Neurochem Res 36(10):1876–1886

    Article  CAS  PubMed  Google Scholar 

  44. Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon, Eugene

    Google Scholar 

  45. Dufourcq P, Vriz S (2006) The chemokine SDF-1 regulates blastema formation during zebrafish fin regeneration. Dev Genes Evol 216(10):635–639

    Article  CAS  PubMed  Google Scholar 

  46. Eltzschig HK (2009) Adenosine: an old drug newly discovered. Anesthesiology 111(4):904–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Boehmler W, Petko J, Woll M, Frey C, Thisse B, Thisse C, Canfield VA, Levenson R (2009) Identification of zebrafish A2 adenosine receptors and expression in developing embryos. Gene Expr Patterns 9(3):144–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276(5309):81–87

    Article  CAS  PubMed  Google Scholar 

  49. Stone TW (1981) Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system. Neuroscience 6(4):523–555

    Article  CAS  PubMed  Google Scholar 

  50. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  51. Christen B, Robles V, Raya M, Paramonov I, Belmonte JC (2010) Regeneration and reprogramming compared. BMC Biol 8:5

    Article  PubMed Central  PubMed  Google Scholar 

  52. Maki N, Suetsugu-Maki R, Tarui H, Agata K, Del Rio-Tsonis K, Tsonis PA (2009) Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238(6):1613–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S, Weidinger G (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20(5):713–724

    Article  CAS  PubMed  Google Scholar 

  54. Tu S, Johnson SL (2011) Fate restriction in the growing and regenerating zebrafish fin. Dev Cell 20(5):725–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simoes M, Leon J, Roehl H, Cancela ML, Jacinto A (2011) Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138(18):3897–3905

    Article  CAS  PubMed  Google Scholar 

  56. Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22(4):879–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Stewart S, Stankunas K (2012) Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev Biol 365(2):339–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758

    Article  CAS  PubMed  Google Scholar 

  59. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14(7):1315–1323

    Article  CAS  PubMed  Google Scholar 

  60. Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta 1808(5):1329–1339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lee DA, Knight MM, Campbell JJ, Bader DL (2011) Stem cell mechanobiology. J Cell Biochem 112(1):1–9

    Article  CAS  PubMed  Google Scholar 

  62. Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alain Prochiantz for the helpful discussions and constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Vriz.

Additional information

Christine Rampon and Carole Gauron contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effect of AMP, ATP and adenosine receptor agonists and an antagonist on fin regeneration. Fish were incubated in drugs (nM) from the time of amputation to 3 dpa, and then the efficiency of regeneration was quantified and expressed as a percentage of the control. Representative fins are shown. Dotted lines indicate the amputation plane. Error bars represent the SEM (* p < 0.05, **p < 0.01, ***p < 0.001). n values were indicated on the bottom of each bar of the graph (JPEG 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rampon, C., Gauron, C., Meda, F. et al. Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration. Purinergic Signalling 10, 595–602 (2014). https://doi.org/10.1007/s11302-014-9420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9420-9

Keywords

Navigation