Skip to main content

Advertisement

Log in

Physiological significance of P2X receptor-mediated vasoconstriction in five different types of arteries in rats

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

P2X1 receptors, the major subtype of P2X receptors in the vascular smooth muscle, are essential for α,β-methylene adenosine 5′-triphosphate (α,β-MeATP)-induced vasoconstriction. However, relative physiological significance of P2X1 receptor-regulated vasoconstriction in the different types of arteries in the rat is not clear as compared with α1-adrenoceptor-regulated vasoconstriction. In the present study, we found that vasoconstrictive responses to noncumulative administration of α,β-MeATP in the rat isolated mesenteric arteries were significantly smaller than those to single concentration administration of α,β-MeATP. Therefore, we firstly reported the characteristic of α,β-MeATP-regulated vasoconstrictions in rat tail, internal carotid, pulmonary, mesenteric arteries, and aorta using single concentration administration of α,β-MeATP. The rank order of maximal vasoconstrictions for α,β-MeATP (E max·α,β-MeATP) was the same as that of maximal vasoconstrictions for noradrenaline (E max·NA) in the internal carotid, pulmonary, mesenteric arteries, and aorta. Moreover, the value of (E max·α,β-MeATP/E max·KCl)/(E max·NA/E max·KCl) was 0.4 in each of the four arteries, but it was 0.8 in the tail artery. In conclusion, P2X1 receptor-mediated vasoconstrictions are equally important in rat internal carotid, pulmonary, mesenteric arteries, and aorta, but much greater in the tail artery, suggesting its special role in physiological function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kennedy C, Saville VL, Burnstock G (1986) The contributions of noradrenaline and ATP to the response of the rabbit central ear artery to sympathetic nerve stimulation depend on the parameters of stimulation. Eur J Pharmacol 122:291–300

    Article  PubMed  CAS  Google Scholar 

  2. Burnstock G, Warland JJ (1987) A pharmacological study of the rabbit saphenous artery in vitro: a vessel with a large purinergic contractile response to sympathetic nerve stimulation. Br J Pharmacol 90:111–120

    PubMed  CAS  Google Scholar 

  3. Brizzolara AL, Burnstock G (1990) Evidence for noradrenergic–purinergic cotransmission in the hepatic artery of the rabbit. Br J Pharmacol 99:835–839

    PubMed  CAS  Google Scholar 

  4. Ren LM, Burnstock G (1997) Prominent sympathetic purinergic vasoconstriction in the rabbit splenic artery: potentiation by 2,2′-pyridylisatogen tosylate. Br J Pharmacol 120:530–536

    Article  PubMed  CAS  Google Scholar 

  5. Bo X, Burnstock G (1993) Heterogeneous distribution of [3H]α, β-methylene ATP binding sites in blood vessels. J Vasc Res 30:87–101

    Article  PubMed  CAS  Google Scholar 

  6. Ramme D, Regenold JT, Starke K, Busse R, Illes P (1987) Identification of the neuroeffector transmitter in jejunal branches of rabbit mesenteric artery. Naunyn–Schmiedeberg’s Arch Pharmacol 336:267–273

    CAS  Google Scholar 

  7. Boarder MR, Hourani SM (1998) The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. Trends Pharmacol Sci 19:99–107

    Article  PubMed  CAS  Google Scholar 

  8. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371:516–519

    Article  PubMed  CAS  Google Scholar 

  9. Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    PubMed  CAS  Google Scholar 

  10. Galligan JJ, Hess MC, Miller SB, Fink GD (2001) Differential localization of P2 receptor subtypes in mesenteric arteries and veins of normotensive and hypertensive rats. J Pharmacol Exp Ther 296:478–485

    PubMed  CAS  Google Scholar 

  11. Vial C, Evans RJ (2002) P2X1 receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries. Mol Pharmacol 62:1438–1445

    Article  PubMed  CAS  Google Scholar 

  12. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4:1–20

    Article  PubMed  CAS  Google Scholar 

  13. Steinmetz M, Bierer S, Hollah P, Rahn KH, Schlatter E (2000) Heterogenous vascular effects of AP5A in different rat resistance arteries are due to heterogenous distribution of P2X and P2Y1 purinoceptors. J Pharmacol Exp Ther 294:1182–1187

    PubMed  CAS  Google Scholar 

  14. Malmsjö M, Bergdahl A, Möller S, Zhao XH, Sun XY, Hedner T, Edvinsson L, Erlinge D (1999) Congestive heart failure induces downregulation of P2X1-receptors in resistance arteries. Cardiovasc Res 43:219–227

    Article  PubMed  Google Scholar 

  15. Wihlborg AK, Slätt J, Sun X, Zhao XH, Malmsjö M, Bergman J, Hedner T, Erlinge D (2003) 2,2′-Nitrophenylisatogen potentiates P2X1 receptor mediated vascular contraction and blood pressure elevation. Drug Dev Res 59:82–87

    Article  CAS  Google Scholar 

  16. Liu SF, McCormack DG, Evans TW, Barnes PJ (1989) Characterization and distribution of P2-purinoceptor subtypes in rat pulmonary vessels. J Pharmacol Exp Ther 251:1204–1210

    PubMed  CAS  Google Scholar 

  17. Mombouli JV, Vanhoutte PM (1993) Purinergic endothelium-dependent and -independent contractions in rat aorta. Hypertension 22:577–583

    PubMed  CAS  Google Scholar 

  18. O’Connor SE, Wood BE, Leff P (1990) Characterization of P2x -receptors in rabbit isolated ear artery. Br J Pharmacol 101:640–644

    PubMed  Google Scholar 

  19. Zhao D, Ren LM (2005) Non-adrenergic inhibition at prejunctional sites by agmatine of purinergic vasoconstriction in rabbit saphenous artery. Neuropharmacology 48:597–606

    Article  PubMed  CAS  Google Scholar 

  20. Zhao D, Ren LM, Lu HG, Zhang X (2008) Potentiation by yohimbine of α-adrenoceptor-mediated vasoconstriction in response to clonidine in the rabbit ear vein. Eur J Pharmacol 589:201–205

    Article  PubMed  CAS  Google Scholar 

  21. Park JY, Shin HK, Lee YJ, Choi YW, Bae SS, Kim CD (2009) The mechanism of vasorelaxation induced by Schisandra chinensis extract in rat thoracic aorta. J Ethnopharmacol 121:69–73

    Article  PubMed  Google Scholar 

  22. Oriowo MA, Chandrasekhar B, Kadavil EA (2003) α1-Adrenoceptor subtypes mediating noradrenaline-induced contraction of pulmonary artery from pulmonary hypertensive rats. Eur J Pharmacol 482:255–263

    Article  PubMed  CAS  Google Scholar 

  23. Massett MP, Lewis SJ, Bates JN, Kregel KC (1998) Effect of heating on vascular reactivity in rat mesenteric arteries. J Appl Physiol 85:701–708

    PubMed  CAS  Google Scholar 

  24. Jähnichen S, Eltze M, Pertz HH (2004) Evidence that α1B-adrenoceptors are involved in noradrenaline-induced contractions of rat tail artery. Eur J Pharmacol 488:157–167

    Article  PubMed  Google Scholar 

  25. Leff P, Wood BE, O’Connor SE (1990) Suramin is a slowly-equilibrating but competitive antagonist at P2X-receptors in the rabbit isolated ear artery. Br J Pharmacol 101:645–649

    PubMed  CAS  Google Scholar 

  26. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    PubMed  CAS  Google Scholar 

  27. Ren LM, Zhang M (2002) Distribution of functional P2X1-like receptor in isolated rabbit arteries. Acta Pharmacol Sin 23:721–726

    PubMed  CAS  Google Scholar 

  28. Muramatsu I, Ohmura T, Kigoshi S, Hashimoto S, Oshita M (1990) Pharmacological subclassification of α-adrenoceptors in vascular smooth muscle. Br J Pharmacol 99:197–201

    PubMed  CAS  Google Scholar 

  29. Chootip K, Ness KF, Wang Y, Gurney AM, Kennedy C (2002) Regional variation in P2 receptor expression in the rat pulmonary arterial circulation. Br J Pharmacol 137:637–646

    Article  PubMed  CAS  Google Scholar 

  30. Vails AJ, Crowe R, Burnstock G (1997) A neuromodulatory role for neuronal nitric oxide in the rabbit renal artery. Br J Pharmacol 121:213–220

    Article  Google Scholar 

  31. Bo X, Sexton A, Xiang Z, Nori SL, Burnstock G (1998) Pharmacological and histochemical evidence for P2X receptors in human umbilical vessels. Eur J Pharmacol 353:59–65

    Article  PubMed  CAS  Google Scholar 

  32. Garcia-Villalon AL, Garcia JL, Fernandez N, Monge L, Gomez B, Dieguez G (1996) Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide. Br J Pharmacol 118:1848–1854

    PubMed  CAS  Google Scholar 

  33. Nori S, Fumagalli L, Bo X, Bogdanov Y, Burnstock G (1998) Coexpression of mRNAs for P2X1, P2X2 and P2X4 receptors in rat vascular smooth muscle: an in situ hybridization and RT-PCR study. J Vasc Res 35:179–185

    Article  PubMed  CAS  Google Scholar 

  34. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  35. Hansen MA, Dutton JL, Balcar VJ, Barden JA, Bennett MR (1999) P2X (purinergic) receptor distributions in rat blood vessels. J Auton Nerv Syst 75:147–155

    Article  PubMed  CAS  Google Scholar 

  36. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523

    Article  PubMed  CAS  Google Scholar 

  37. Wallace A, Knight GE, Cowen T, Burnstock G (2006) Changes in purinergic signalling in developing and ageing rat tail artery: importance for temperature control. Neuropharmacology 50:191–208

    Article  PubMed  CAS  Google Scholar 

  38. Rand RP, Burton AC, Ing T (1965) The tail of the rat, in temperature regulation and acclimatization. Can J Physiol Pharmacol 43:257–267

    Article  PubMed  CAS  Google Scholar 

  39. Raman ER, Vanhuyse VJ, Roberts MF (1987) Mathematical circulation model for the blood-flow–heat-loss relationship in the rat tail. Phys Med Biol 32:859–875

    Article  PubMed  CAS  Google Scholar 

  40. Ajay M, Achike FI, Mustafa MR (2007) Modulation of vascular reactivity in normal, hypertensive and diabetic rat aortae by a non-antioxidant flavonoid. Pharmacol Res 55:385–391

    Article  PubMed  CAS  Google Scholar 

  41. Yu J, Tokinaga Y, Kuriyama T, Uematsu N, Mizumoto K, Hatano Y (2005) Involvement of Ca2+ sensitization in ropivacaine-induced contraction of rat aortic smooth muscle. Anesthesiology 103:548–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Program on Key Basic Research Project of China (973 Program; No. 2005CB523301).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei-Ming Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Jia, ZH., Chen, C. et al. Physiological significance of P2X receptor-mediated vasoconstriction in five different types of arteries in rats. Purinergic Signalling 7, 221–229 (2011). https://doi.org/10.1007/s11302-011-9226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9226-y

Keywords

Navigation