Skip to main content
Log in

Nucleotides affect neurogenesis and dopaminergic differentiation of mouse fetal midbrain-derived neural precursor cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The fetal midbrain is a preferred source for isolating and producing dopaminergic neurons for subsequent grafting and replacement of damaged or lost dopaminergic midbrain neurons. We analysed the potential of a variety of nucleotides and of adenosine to support dopaminergic neuron formation from primary mouse fetal midbrain-derived cells, harvested at E10.5 and at E13.5 and subjected to adherent cell culture. In contrast to cells derived at E13.5, cells derived at E10.5 have the potential to produce dopaminergic neurons in culture. These neurons express tyrosine hydroxylase and the dopamine transporter. The fetal ventral midbrain contained mRNA encoding almost all P2X and P2Y receptors, all adenosine receptors as well as the ectonucleotidases nucleoside triphosphate diphosphohydrolase 2 and tissue nonspecific alkaline phosphatase. Essentially, all components of the purinergic signalling pathway were also expressed by the cultured cells. ATP, ADPβS, 2MeSATP, 2ClATP and adenosine increased neuron formation. There was, however, no preference for the formation of dopaminergic neurons—with the exception of 2ClATP that increased the relative contribution of tyrosine hydroxylase-positive neurons. In cells isolated at E13.5 UTP promoted neuron survival but ADPβS and ATPγS essentially eliminated neurons. These data showed that the outcome of nucleotide application was different even though cells isolated at E10.5 and E13.5 expressed very similar receptor mRNA profiles. They suggest that purinergic agonists carry potential for stimulating neurogenesis and enriching the contribution of dopaminergic neurons in vitro. Nucleotide receptor agonists may be of value for contributing to the formation and survival of dopaminergic neurons in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406

    Article  CAS  PubMed  Google Scholar 

  2. Ormerod BK, Palmer TD, Caldwell MA (2008) Neurodegeneration and cell replacement. Philos Trans R Soc B Biol Sci 363:153–170

    Article  CAS  Google Scholar 

  3. Morizane A, Li JY, Brundin P (2008) From bench to bed: the potential of stem cells for the treatment of Parkinson’s disease. Cell Tissue Res 331:323–336

    Article  PubMed  Google Scholar 

  4. Braak H, Del TK (2008) Assessing fetal nerve cell grafts in Parkinson’s disease. Nat Med 14:483–485

    Article  CAS  PubMed  Google Scholar 

  5. Bayer SA, Wills KV, Triarhou LC, Ghetti B (1995) Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 105:191–199

    CAS  PubMed  Google Scholar 

  6. Ang SL (2006) Transcriptional control of midbrain dopaminergic neuron development. Development 133:3499–3506

    Article  CAS  PubMed  Google Scholar 

  7. Jonsson ME, Ono Y, Björklund A, Thompson LH (2009) Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp Neurol 219:341–354

    Article  PubMed  Google Scholar 

  8. Vitalis T, Cases O, Parnavelas JG (2005) Development of the dopaminergic neurons in the rodent brainstem. Exp Neurol 191(Suppl 1):S104–S112

    Article  CAS  PubMed  Google Scholar 

  9. Prakash N, Wurst W (2006) Development of dopaminergic neurons in the mammalian brain. Cell Mol Life Sci 63:187–206

    Article  CAS  PubMed  Google Scholar 

  10. Roussa E, Oehlke O, Rahhal B, Heermann S, Heidrich S, Wiehle M, Krieglstein K (2008) Transforming growth factor beta cooperates with persephin for dopaminergic phenotype induction. Stem Cells 26:1683–1694

    Article  CAS  PubMed  Google Scholar 

  11. Chung S, Shin BS, Hwang M, Lardaro T, Kang UJ, Isacson O, Kim KS (2006) Neural precursors derived from embryonic stem cells, but not those from fetal ventral mesencephalon, maintain the potential to differentiate into dopaminergic neurons after expansion in vitro. Stem Cells 24:1583–1593

    Article  CAS  PubMed  Google Scholar 

  12. Andersson EK, Irvin DK, Ahlsio J, Parmar M (2007) Ngn2 and Nurr1 act in synergy to induce midbrain dopaminergic neurons from expanded neural stem and progenitor cells. Exp Cell Res 313:1172–1180

    Article  CAS  PubMed  Google Scholar 

  13. Mishra SK, Braun N, Shukla V, Füllgrabe M, Schomerus C, Korf H-W, Gachet C, Ikehara Y, Sévigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133:675–684

    Article  CAS  PubMed  Google Scholar 

  14. Lin JHC, Takano T, Arcuino G, Wang XH, Hu FR, Darzynkiewicz Z, Nunes M, Goldman SA, Nedergaard M (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302:356–366

    Article  CAS  PubMed  Google Scholar 

  15. Aberg ND, Johansson UE, Aberg MAI, Hellström NAK, Lind J, Bull C, Isgaard J, Anderson MF, Oscarsson J, Eriksson PS (2007) Peripheral infusion of insulin-like growth factor-I increases the number of newborn oligodendrocytes in the cerebral cortex of adult hypophysectomized rats. Endocrinology 148:3765–3772

    Article  PubMed  Google Scholar 

  16. Grimm I, Messemer N, Stanke M, Gachet C, Zimmermann H (2009) Coordinate pathways for nucleotide and EGF signaling in cultured adult neural progenitor cells. J Cell Sci 122:2524–2533

    Article  CAS  PubMed  Google Scholar 

  17. Grimm I, Ullsperger SN, Zimmermann H (2010) Nucleotides and EGF induce parallel cytoskeletal rearrangements and migration in cultured adult murine neural stem cells. Acta Physiol (Oxf) 199:181–189

    Article  CAS  Google Scholar 

  18. Milosevic J, Brandt A, Roemuss U, Arnold A, Wegner F, Schwarz SC, Storch A, Zimmermann H, Schwarz J (2006) Uracil nucleotides stimulate human neural precursor cell proliferation and dopaminergic differentiation: involvement of MEK/ERK signalling. J Neurochem 99:913–923

    Article  CAS  PubMed  Google Scholar 

  19. Rubini P, Milosevic J, Engelhardt J, Al-Khrasani M, Franke H, Heinrich A, Sperlagh B, Schwarz SC, Schwarz J, Nörenberg W, Illes P (2009) Increase of intracellular Ca2+ by adenine and uracil nucleotides in human midbrain-derived neuronal progenitor cells. Cell Calcium 45:485–498

    Article  CAS  PubMed  Google Scholar 

  20. Heine C, Wegner A, Grosche J, Allgaier C, Illes P, Franke H (2007) P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience 149:165–181

    Article  CAS  PubMed  Google Scholar 

  21. Choi YM, Jang JY, Jang M, Kim SH, Kang YK, Cho H, Chung S, Park MK (2009) Modulation of firing activity by ATP in dopamine neurons of the rat substantia nigra pars compacta. Neuroscience 160:587–595

    Article  CAS  PubMed  Google Scholar 

  22. Ralser M, Querfurth R, Warnatz HJ, Lehrach H, Yaspo ML, Krobitsch S (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 347:747–751

    Article  CAS  PubMed  Google Scholar 

  23. Bonilla S, Hall AC, Pinto L, Attardo A, Götz M, Huttner WB, Arenas E (2008) Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Glia 56:809–820

    Article  PubMed  Google Scholar 

  24. Thompson L, Barraud P, Andersson E, Kirik D, Björklund A (2005) Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 25:6467–6477

    Article  CAS  PubMed  Google Scholar 

  25. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  PubMed  Google Scholar 

  26. Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250

    Article  PubMed  Google Scholar 

  27. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25

    Article  CAS  PubMed  Google Scholar 

  28. Ono Y, Nakatani T, Sakamoto Y, Mizuhara E, Minaki Y, Kumai M, Hamaguchi A, Nishimura M, Inoue Y, Hayashi H, Takahashi J, Imai T (2007) Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134:3213–3225

    Article  CAS  PubMed  Google Scholar 

  29. Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B, Perlmann T, Ericson J (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124:393–405

    Article  CAS  PubMed  Google Scholar 

  30. Koshimizu TA, Tsujimoto G (2006) Functional role of spliced cytoplasmic tails in P2X2-receptor-mediated cellular signaling. J Pharmacol Sci 101:261–266

    Article  CAS  PubMed  Google Scholar 

  31. Stojilkovic SS, He ML, Koshimizu TA, Balik A, Zemkova H (2010) Signaling by purinergic receptors and channels in the pituitary gland. Mol Cell Endocrinol 314:184–191

    Article  CAS  PubMed  Google Scholar 

  32. Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflügers Arch Eur J Physiol 452:573–588

    Article  CAS  Google Scholar 

  33. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  34. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International union of pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  PubMed  Google Scholar 

  35. Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford AP (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537

    Article  CAS  PubMed  Google Scholar 

  36. Stafford MR, Bartlett PF, Adams DJ (2007) Purinergic receptor activation inhibits mitogen-stimulated proliferation in primary neurospheres from the adult mouse subventricular zone. Mol Cell Neurosci 35:535–548

    Article  CAS  PubMed  Google Scholar 

  37. Fumagalli M, Brambilla R, D’Ambrosi N, Volonté C, Matteoli M, Verderio C, Abracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–230

    Article  PubMed  Google Scholar 

  38. Dixon SJ, Yu RG, Panupinthu N, Wilson JX (2004) Activation of P2 nucleotide receptors stimulates acid efflux from astrocytes. Glia 47:367–376

    Article  PubMed  Google Scholar 

  39. Migita H, Kominami K, Higashida M, Maruyama R, Tuchida N, McDonald F, Shimada F, Sakurada K (2008) Activation of adenosine A1 receptor-induced neural stem cell proliferation via MEK/ERK and Akt signaling pathways. J Neurosci Res 86:2820–2828

    Article  CAS  PubMed  Google Scholar 

  40. Khaira SK, Pouton CW, Haynes JM (2009) P2X2, P2X4 and P2Y1 receptors elevate intracellular Ca2+ in mouse embryonic stem cell-derived GABAergic neurons. Brit J Pharmacol 158:1922–1931

    Article  CAS  Google Scholar 

  41. D’Ambrosi N, Costanzi S, Angelini DF, Volpini R, Sancesario G, Cristalli G, Volonté C (2004) 2-CIATP exerts anti-tumoural actions not mediated by P2 receptors in neuronal and glial cell lines. Biochem Pharmacol 67:621–630

    Article  PubMed  Google Scholar 

  42. D’Ambrosi N, Murra B, Cavaliere F, Amadio S, Bernardi G, Burnstock G, Volonté C (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108:527–534

    Article  PubMed  Google Scholar 

  43. Jia C, Doherty JP, Crudgington S, Hegg CC (2009) Activation of purinergic receptors induces proliferation and neuronal differentiation in Swiss Webster mouse olfactory epithelium. Neuroscience 163:120–128

    Article  CAS  PubMed  Google Scholar 

  44. Tomé AR, Castro E, Santos RM, Rosario LM (2007) Selective stimulation of catecholamine release from bovine adrenal chromaffin cells by an ionotropic purinergic receptor sensitive to 2-methylthio ATP. BMC Neurosci 8:41

    Article  PubMed  Google Scholar 

  45. Heine C, Heimrich B, Vogt J, Wegner A, Illes P, Franke H (2006) P2 receptor-stimulation influences axonal outgrowth in the developing hippocampus in vitro. Neuroscience 138:303–311

    Article  CAS  PubMed  Google Scholar 

  46. Jun DJ, Kim J, Jung SY, Song R, Noh JH, Park YS, Ryu SH, Kim JH, Kong YY, Chung JM, Kim KT (2007) Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors. J Biol Chem 282:37350–37358

    Article  CAS  PubMed  Google Scholar 

  47. Delarasse C, Gonnord P, Galante M, Auger R, Daniel H, Motta I, Kanellopoulos JM (2009) Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 109:846–857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Zi 140/18-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delic, J., Zimmermann, H. Nucleotides affect neurogenesis and dopaminergic differentiation of mouse fetal midbrain-derived neural precursor cells. Purinergic Signalling 6, 417–428 (2010). https://doi.org/10.1007/s11302-010-9206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-010-9206-7

Keywords

Navigation