Skip to main content
Log in

Aminoglycoside block of P2X2 receptors heterologously expressed in Xenopus laevis oocytes

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Aminoglycosides are polycationic antibiotics that have been shown to block a variety of cation channels. The inhibitory effect of externally applied aminoglycosides on P2X2 receptor currents was examined after heterologous expression in Xenopus laevis oocytes using the two-electrode voltage-clamp technique. All of the aminoglycosides tested inhibited the ATP-evoked responses with potencies ranging from 71 μM to 2 mM (IC50 values). The ranked order of potency was streptomycin > gentamicin > neomycin > paromomycin > kanamycin. The inhibition of P2X receptor currents was independent of the ATP concentration used for the activation, which is compatible with a noncompetitive mechanism. The inhibition was voltage-dependent and was reduced at more positive membrane potentials. To examine whether the current block was dependent on the receptor conformation, the aminoglycoside effect on a non-desensitizing P2X2-X1 receptor chimera was analyzed. The results from these measurements suggest that inhibition is caused by an open pore block that locks the P2X receptor chimera in an open nonconducting state from which the agonist dissociation is slow. We also demonstrate that the P2X2-X1 chimera can serve as a tool to directly test whether an antagonist acts competitively or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nicke A, Bäumert HG, Rettinger J et al (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17:3016–3028

    Article  CAS  PubMed  Google Scholar 

  2. Aschrafi A, Sadtler S, Niculescu C et al (2004) Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J Mol Biol 342:333–343

    Article  CAS  PubMed  Google Scholar 

  3. Jasti J, Furukawa H, Gonzales EB et al (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323

    Article  CAS  PubMed  Google Scholar 

  4. Kawate T, Michel JC, Birdsong WT et al (2009) Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460:592–598

    Article  CAS  PubMed  Google Scholar 

  5. Jarvis MF (2010) The neural–glial purinergic receptor ensemble in chronic pain states. Trends Neurosci 33:48–57

    Article  CAS  PubMed  Google Scholar 

  6. Cao L, Broomhead HE, Young MT et al (2009) Polar residues in the second transmembrane domain of the rat P2X2 receptor that affect spontaneous gating, unitary conductance, and rectification. J Neurosci 29:14257–14264

    Article  CAS  PubMed  Google Scholar 

  7. Kracun S, Chaptal V, Abramson J et al (2010) Gated access to the pore of a P2X receptor: structural implications for closed–open transitions. J Biol Chem 285:10110–10121

    Article  CAS  PubMed  Google Scholar 

  8. Jiang R, Martz A, Gonin S et al (2010) A putative extracellular salt bridge at the subunit interface contributes to the ion channel function of the ATP-gated P2X2 receptor. J Biol Chem 285:15805–15815

    Article  CAS  PubMed  Google Scholar 

  9. Keceli B, Kubo Y (2009) Functional and structural identification of amino acid residues of the P2X2 receptor channel critical for the voltage- and [ATP]-dependent gating. J Physiol 587:5801–5818

    Article  CAS  PubMed  Google Scholar 

  10. Wildman SS, King BF, Burnstock G (1999) Modulatory activity of extracellular H+ and Zn2+ on ATP-responses at rP2X1 and rP2X3 receptors. Br J Pharmacol 128:486–492

    Article  CAS  PubMed  Google Scholar 

  11. Virginio C, Church D, North RA et al (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36:1285–1294

    Article  CAS  PubMed  Google Scholar 

  12. Khakh BS, Proctor WR, Dunwiddie TV et al (1999) Allosteric control of gating and kinetics at P2X4 receptor channels. J Neurosci 19:7289–7299

    CAS  PubMed  Google Scholar 

  13. Miller KJ, Michel AD, Chessell IP et al (1998) Cibacron blue allosterically modulates the rat P2X4 receptor. Neuropharmacology 37:1579–1586

    Article  CAS  PubMed  Google Scholar 

  14. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  15. Schatz A, Bugie E, Waksman SA (2005) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. 1944. Clin Orthop Relat Res 437:3–6

    Article  PubMed  Google Scholar 

  16. Rybak LP, Whitworth CA (2005) Ototoxicity: therapeutic opportunities. Drug Discov Today 10:1313–1321

    Article  CAS  PubMed  Google Scholar 

  17. Selimoglu E (2007) Aminoglycoside-induced ototoxicity. Curr Pharm Des 13:119–126

    Article  CAS  PubMed  Google Scholar 

  18. Blanchet C, Erostegui C, Sugasawa M et al (2000) Gentamicin blocks ACh-evoked K+ current in guinea-pig outer hair cells by impairing Ca2+ entry at the cholinergic receptor. J Physiol 525(Pt 3):641–654

    Article  CAS  PubMed  Google Scholar 

  19. Schacht J (1993) Biochemical basis of aminoglycoside ototoxicity. Otolaryngol Clin North Am 26:845–856

    CAS  PubMed  Google Scholar 

  20. Vital BO, Prado-Franceschi J (1969) The nature of neuromuscular block produced by neomycin and gentamicin. Arch Int Pharmacodyn Thér 179:78–85

    Google Scholar 

  21. Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359:189–217

    CAS  PubMed  Google Scholar 

  22. Winegar BD, Haws CM, Lansman JB (1996) Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol 107:433–443

    Article  CAS  PubMed  Google Scholar 

  23. Okamoto T, Sumikawa K (1991) Antibiotics cause changes in the desensitization of ACh receptors expressed in Xenopus oocytes. Brain Res Mol Brain Res 9:165–168

    Article  CAS  PubMed  Google Scholar 

  24. Amici M, Eusebi F, Miledi R (2005) Effects of the antibiotic gentamicin on nicotinic acetylcholine receptors. Neuropharmacology 49:627–637

    CAS  PubMed  Google Scholar 

  25. Raisinghani M, Premkumar LS (2005) Block of native and cloned vanilloid receptor 1 (TRPV1) by aminoglycoside antibiotics. Pain 113:123–133

    Article  CAS  PubMed  Google Scholar 

  26. Masuko T, Kuno T, Kashiwagi K et al (1999) Stimulatory and inhibitory properties of aminoglycoside antibiotics at N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 290:1026–1033

    CAS  PubMed  Google Scholar 

  27. Lin X, Hume RI, Nuttall AL (1993) Voltage-dependent block by neomycin of the ATP-induced whole cell current of guinea-pig outer hair cells. J Neurophysiol 70:1593–1605

    CAS  PubMed  Google Scholar 

  28. Ito K, Dulon D (2010) Purinergic signaling in cochleovestibular hair cells and afferent neurons. Purinergic Signal 6:201–209

    Article  CAS  PubMed  Google Scholar 

  29. Telang RS, Paramananthasivam V, Vlajkovic SM et al (2010) Reduced P2x(2) receptor-mediated regulation of endocochlear potential in the ageing mouse cochlea. Purinergic Signal 6:263–272

    Article  CAS  PubMed  Google Scholar 

  30. Housley GD, Greenwood D, Ashmore JF (1992) Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc Biol Sci 249:265–273

    Article  CAS  PubMed  Google Scholar 

  31. Szucs A, Szappanos H, Toth A et al (2004) Differential expression of purinergic receptor subtypes in the outer hair cells of the guinea pig. Hear Res 196:2–7

    Article  CAS  PubMed  Google Scholar 

  32. Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA 102:18724–18729

    Article  CAS  PubMed  Google Scholar 

  33. Werner P, Seward EP, Buell GN et al (1996) Domains of P2X receptors involved in desensitization. Proc Natl Acad Sci USA 93:15485–15490

    Article  CAS  PubMed  Google Scholar 

  34. Rettinger J, Schmalzing G (2004) Desensitization masks nanomolar potency of ATP at the P2X1 receptor. J Biol Chem 279:6426–6433

    Article  CAS  PubMed  Google Scholar 

  35. Miledi R, Parker I, Woodward RM (1989) Membrane currents elicited by divalent cations in Xenopus oocytes. J Physiol 417:173–195

    CAS  PubMed  Google Scholar 

  36. Weber WM (1999) Endogenous ion channels in oocytes of Xenopus laevis: recent developments. J Membr Biol 170:1–12

    Article  CAS  PubMed  Google Scholar 

  37. Evans RJ, Lewis C, Buell G et al (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol Pharmacol 48:178–183

    CAS  PubMed  Google Scholar 

  38. Ding S, Sachs F (2000) Inactivation of P2X2 purinoceptors by divalent cations. J Physiol 522:199–214

    Article  CAS  PubMed  Google Scholar 

  39. Rettinger J, Schmalzing G (2003) Activation and desensitization of the recombinant P2X1 receptor at nanomolar ATP concentrations. J Gen Physiol 121:451–461

    Article  CAS  PubMed  Google Scholar 

  40. International Union of Pharmacology, Khakh BS, Burnstock G, Kennedy C et al (2001) XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118

    CAS  PubMed  Google Scholar 

  41. Rettinger J, Braun K, Hochmann H et al (2005) Profiling at recombinant homomeric and heteromeric rat P2X receptors identifies the suramin analogue NF449 as a highly potent P2X1 receptor antagonist. Neuropharmacology 48:461–468

    Article  CAS  PubMed  Google Scholar 

  42. Grosman C, Auerbach A (2001) The dissociation of acetylcholine from open nicotinic receptor channels. Proc Natl Acad Sci USA 98:14102–14107

    Article  CAS  PubMed  Google Scholar 

  43. Hausmann R, Rettinger J, Gerevich Z et al (2006) The suramin analog 4, 4′, 4″, 4‴-(carbonylbis(imino-5,1,3-benzenetriylbis (carbonylimino)))tetra-kis-benzenesulfonic acid (NF110) potently blocks P2X3 receptors: subtype selectivity is determined by location of sulfonic acid groups. Mol Pharmacol 69:2058–2067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Anja Becker and Janna Enderich for technical assistance, Ernst Bamberg for generous support, and Günther Schmalzing for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hausmann.

Additional information

Jürgen Rettinger and Ralf Hausmann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongartz, EV., Rettinger, J. & Hausmann, R. Aminoglycoside block of P2X2 receptors heterologously expressed in Xenopus laevis oocytes. Purinergic Signalling 6, 393–403 (2010). https://doi.org/10.1007/s11302-010-9204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-010-9204-9

Keywords

Navigation