Birkmayer W, Hornykiewicz O (1961) The effect of L-3,3-dihydroxyphenylalanine (L-DOPA) on akinesia in Parkinsonism. Wien Klin Wochenschr 73:787–788. English translation 1998, Parkinsonism and Related Disorders 4:59–60
Dauer W, Przedborski S (2003) Parkinson’s disease: Mechanisms and models. Neuron 39:889–909
PubMed
Article
CAS
Google Scholar
Kroemer G, El-Deiry WS, Golstein P et al (2005) Nomenclature Committee on Cell Death. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12(S2):1463–1467
PubMed
Article
CAS
Google Scholar
Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144
PubMed
Article
CAS
Google Scholar
Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–375
PubMed
Article
CAS
Google Scholar
Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802
PubMed
Article
CAS
Google Scholar
Benn SC, Woolf CJ (2004) Adult neuron survival strategies—slamming on the brakes. Nat Neurosci 5:686–700
Article
CAS
Google Scholar
Shiozaki EN, Shi Y (2004) Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 29:486–494
PubMed
Article
CAS
Google Scholar
Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731
PubMed
Article
CAS
Google Scholar
Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43
PubMed
Article
CAS
Google Scholar
Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18
PubMed
Article
CAS
Google Scholar
Nagata S (2005) DNA degradation in development and programmed cell death. Annu Rev Immunol 23:853–875
PubMed
Article
CAS
Google Scholar
Hartmann A, Hunot S, Michel PP et al (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci U S A 97:2875–2880
PubMed
Article
CAS
Google Scholar
Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43
PubMed
Article
CAS
Google Scholar
Hartmann A, Michel PP, Troadec J-D et al (2001) Is Bax a mitochondrial mediator of apoptotic death of dopaminergic neurons in Parkinson’s disease? J Neurochem 76:1785–1793
PubMed
Article
CAS
Google Scholar
Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–198
PubMed
CAS
Article
Google Scholar
Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Mol Brain Res 134:57–66
PubMed
Article
CAS
Google Scholar
Nicotra A, Pavrez SH (2000) Cell death induced by MPTP, a substrate for monoamine oxidase B. Toxicology 153:157–166
PubMed
Article
CAS
Google Scholar
Fornai F, Schluter OM, Lenzi P et al (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 102:3413–3418
PubMed
Article
CAS
Google Scholar
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795
PubMed
Article
CAS
Google Scholar
Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77:1037–1048
PubMed
Article
CAS
Google Scholar
Maries E, Dass B, Collier TJ et al (2003) The role of alpha-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci 4:727–738
PubMed
Article
CAS
Google Scholar
Gómez C, Reiriz J, Pique M et al (2001) Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 63:421–428
PubMed
Article
Google Scholar
Fall CP, Bennett JP Jr (1999) Characterization and time course of MPP+-induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 55:620–628
PubMed
Article
CAS
Google Scholar
Itano Y, Nomura Y (1995) 1-Methyl-4-phenyl-pyridinium ion (MPP+) causes DNA fragmentation and increases the Bcl-2 expression in human neuroblastoma, SH-SY5Y cells, through different mechanisms. Brain Res 704:240–245
PubMed
Article
CAS
Google Scholar
King TD, Bijur GN, Jope RS (2001) Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3β and attenuated by lithium. Brain Res 919:106–114
PubMed
Article
CAS
Google Scholar
Kakimura J, Kitamura Y, Takata K et al (2001) Release and aggregation of cytochrome c and [alpha]-synuclein are inhibited by the antiparkinsonian drugs, talipexole and pramipexole. Eur J Pharmacol 417:59–67
PubMed
Article
CAS
Google Scholar
Gómez-Santos C, Ferrer I, Reiriz J et al (2002) MPP+ increases α-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res 935:32–39
PubMed
Article
Google Scholar
Kalivendi SV, Cunningham S, Kotamraju S et al (2004) α-Synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells. J Biol Chem 279:15240–15247
PubMed
Article
CAS
Google Scholar
Xu J, Kao SY, Lee FJ et al (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606
PubMed
Article
CAS
Google Scholar
Waldmeier PC, Tatton WG (2004) Interrupting apoptosis in neurodegenerative disease: potential for effective therapy? Drug Discov Today 9:210–218
PubMed
Article
CAS
Google Scholar
Rathbone MP, Middlemiss PJ, Gysbers JW et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690
PubMed
Article
CAS
Google Scholar
Di Iorio P, Ballerini P, Traversa U et al (2004) The anti-apoptotic effect of guanosine is mediated by the activation of the PI 3-kinase/AKT/PKB pathway in cultured rat astrocytes. Glia 46:356–368
PubMed
Article
Google Scholar
Pettifer KM, Kleywegt S, Bau CJ et al (2004) Guanosine protects SH-SY5Y neuroblastoma cells against β-amyloid-induced apoptosis. Neuroreport 15:833–836
PubMed
Article
CAS
Google Scholar
Traversa U, Bombi G, Di Iorio P et al (2002) Specific [H3]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135:969–976
PubMed
Article
CAS
Google Scholar
Traversa U, Di Iorio P, Palmieri C et al (2002) Identification of a guanosine receptor linked to the modulation of adenylate cyclase and MAPK activity in primary cultures of rat astrocytes. Presentation Riunione Annuale del Purine Club 27 October 2002
Traversa U, Bombi G, Camaioni E et al (2003) Rat brain guanosine binding site. Biological studies and pseudo-receptor construction. Bioorg Med Chem 11:5417–5425
PubMed
Article
CAS
Google Scholar
Meissner W, Hill MP, Tison F et al (2004) Neuroprotective strategies for Parkinson’s disease: conceptual limits of animal models and clinical trials. Trends Pharmacol Sci 25:249–253
PubMed
Article
CAS
Google Scholar
Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501
PubMed
Article
CAS
Google Scholar
Di Iorio P, Caciagli F, Giuliani P et al (2001) Purine nucleosides protect injured neurons and stimulate neuronal regeneration by intracellular and membrane receptor-mediated mechanisms. Drug Dev Res 52:303–315
Article
Google Scholar
Viswanath V, Wu Y, Boonplueang R et al (2001) Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. J Neurosci 21:9519–9528
PubMed
CAS
Google Scholar
Vila M, Jackson-Lewis V, Vukosavic S et al (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 98:2837–2842
PubMed
Article
CAS
Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047
PubMed
Article
CAS
Google Scholar
Spillantini MG, Schmidt ML, Lee VMY et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840
PubMed
Article
CAS
Google Scholar
Vila M, Vukosavic S, Jackson-Lewis V (2000) Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the Parkinsonian toxin MPTP. J Neurochem 74:721–729
PubMed
Article
CAS
Google Scholar
Katada T, Ui M (1982) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A 79:3129–3133
PubMed
Article
CAS
Google Scholar
Kaslow HR, Burns DL (1992) Pertussis toxin and target eukaryotic cells: binding, entry, and activation. FASEB J 6:2684–2690
PubMed
CAS
Google Scholar
Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480
PubMed
Article
CAS
Google Scholar
Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147:S46–S55
PubMed
Article
CAS
Google Scholar
Baldwin SA, Mackey JR, Cass CE et al (1999) Nucleoside transporters: molecular biology and implications for therapeutic development. Mol Med Today 5:216–224
PubMed
Article
CAS
Google Scholar
Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267:2003–2006
PubMed
Article
CAS
Google Scholar
Dudek H, Datta SR, Franke TF et al (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665
PubMed
Article
CAS
Google Scholar
Franke TF, Kaplan DR, Cantley LC et al (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668
PubMed
Article
CAS
Google Scholar
Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305
PubMed
Article
CAS
Google Scholar
Bonni A, Brunet A, West AE et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362
PubMed
Article
CAS
Google Scholar
Hetman M, Gozdz A (2004) Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 271:2050–2055
PubMed
Article
CAS
Google Scholar
Lopez-Ilasaca M, Crespo P, Pellici PG et al (1997) Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 275:394–397
PubMed
Article
CAS
Google Scholar
Lopez-Ilasaca M (1998) Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades. Biochem Pharmacol 56:269–277
PubMed
Article
CAS
Google Scholar
Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376
PubMed
Article
CAS
Google Scholar
Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signalling—which way to target? Trends Pharmacol Sci 24:366–376
PubMed
Article
CAS
Google Scholar
Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242
PubMed
Article
CAS
Google Scholar
Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241
PubMed
Article
CAS
Google Scholar
Kennedy SG, Kandel ES, Cross TK et al (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19:5800–5810
PubMed
CAS
Google Scholar
Zhou H, Li XM, Meinkoth J, Pittman RN (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151:483–494
PubMed
Article
CAS
Google Scholar
Xia Z, Dickens M, Raingeaud J et al (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331
PubMed
Article
CAS
Google Scholar
Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849
PubMed
Article
CAS
Google Scholar
Allan LA, Morrice N, Brady S et al (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5:647–654
PubMed
Article
CAS
Google Scholar
Sato S, Fujita N, Tsuruo T (2004) Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway. J Biol Chem 279:33759–33767
PubMed
Article
CAS
Google Scholar
Lee CS, Han ES, Jang YY et al (2000) Protective effect of harmalol and harmaline on MPTP neurotoxicity in the mouse and dopamine-induced damage of brain mitochondria and PC12 cells. J Neurochem 75:521–531
PubMed
Article
CAS
Google Scholar
Maruyama W, Akao Y, Carrillo MC et al (2002) Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24:675–682
PubMed
Article
CAS
Google Scholar
Sharma SK, Carlson EC, Ebadi M (2003) Neuroprotective actions of Selegiline in inhibiting 1-methyl, 4-phenyl, pyridinium ion (MPP+)-induced apoptosis in SK-N-SH neurons. J Neurocytol 32:329–343
PubMed
Article
CAS
Google Scholar
Kitamura Y, Kosaka T, Kakimura JI et al (1998) Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 54:1046–1054
PubMed
CAS
Google Scholar
Wang X-J, Xu J-X (2005) Salvianic acid A protects human neuroblastoma cells SH-SY5Y cells against MPP+-induced cytotoxicity. Neurosci Res 51:129–138
PubMed
Article
CAS
Google Scholar
Bernstein C, Bernstein H, Payne CM et al (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178
PubMed
Article
CAS
Google Scholar
Subba Rao K (2007) Mechanisms of disease: DNA repair defects and neurological disease. Nat Clin Pract Neurol 3:162–172
PubMed
Article
CAS
Google Scholar
Wang H, Shimoji M, Yu SW et al (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson’s disease. Ann N Y Acad Sci 991:132–139
PubMed
CAS
Article
Google Scholar
Krantic S, Mechawar N, Reix S (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28:670–676
PubMed
CAS
Google Scholar
Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends Cell Biol 14:184–193
PubMed
Article
CAS
Google Scholar
Chipuk JE, Green DR (2005) Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 6:268–275
PubMed
Article
CAS
Google Scholar
Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730
PubMed
Article
CAS
Google Scholar