Schwiebert EM, Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 2003; 1615: 7–32.
Article
CAS
PubMed
Google Scholar
Schwiebert EM, Zsembery A, Geibel JP. Chapter 2. Cellular mechanisms and physiology of nucleotide and nucleoside release from cells: Current knowledge, novel assays to detect purinergic agonists, and future directions. In Schwiebert EM (ed): Extracellular Nucleotides and Nucleosides. Current Topics in Membranes, Volume 54, c2003. San Diego, California: Academic Press 2003.
Google Scholar
Zsembery A, Boyce AT, Liang L et al. Sustained calcium entry through P2X nucleotide receptor channels in human airway epithelial cells. J Biol Chem 2003; 278: 13398-08.
Article
CAS
PubMed
Google Scholar
Zsembery A et al. Extracellular zinc and ATP restore chloride secretion across cystic fibrosis airway epithelia by triggering calcium entry. J Biol Chem 2004; 279: 10720-.
Article
CAS
PubMed
Google Scholar
Hershfinkel M, Moran A, Grossman N, Sekler I. A zinc-sensing receptor triggers the release of intracellular calcium and regulates ion transport. Proc Natl Acad Sci USA 2001; 98: 11749-4.
Article
CAS
PubMed
Google Scholar
McNulty TJ, Taylor CW. Extracellular heavy metal ions stimulate calcium mobilization in hepatocytes. Biochem J 1999; 339: 555-1.
Article
CAS
PubMed
Google Scholar
Liang L, Zsembery A, Schwiebert EM. RNA interference targeted against multiple P2X receptor subtypes attenuates zinc-induced calcium entry. Am J Physiol 2005; 288(2): 260-2.
Article
CAS
Google Scholar
North RA. Molecular physiology of P2X receptors. Physiol Rev 2002; 82: 1013-7.
CAS
PubMed
Google Scholar
Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol Rev 2002; 82: 735-7.
CAS
PubMed
Google Scholar
Benos DJ, Stanton BA. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J Physiol (Lond) 1999; 520: 631-4.
Article
CAS
Google Scholar
Bianchi L, Driscoll M. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 2002; 34(3): 337-0.
Article
CAS
PubMed
Google Scholar
Waldmann R. Proton-gated cation channels -neuronal acid sensors in the central and peripheral nervous system. Adv Exp Med Biol 2001; 502: 293–304.
CAS
PubMed
Google Scholar
Welsh MJ, Price MP, Xie J. Biochemical basis of touch perception: Mechanosensory function of degenerin/epithelial Na+ channels. J Biol Chem 2002; 277(4): 2369-2.
Article
CAS
PubMed
Google Scholar
Ennion SJ, Evans RJ. Conserved cysteine residues in the extracellular loop of the human P2X1 receptor form disulfide bonds and are involved in receptor trafficking to the cell surface. Mol Pharmacol 2002; 61: 303-1.
Article
CAS
PubMed
Google Scholar
Clyne JD, Wang LF, Hume RI. Mutational analysis of the conserved cysteines of the rat P2X2 purinoceptor. J Neurosci 2002; 22: 3873-0.
CAS
PubMed
Google Scholar
Nagaya N, Tittle RK, Saar N et al. An intersubunit zinc binding site in rat P2X2 receptors. J Biol Chem 2005; 280(28): 25982-3.
Article
CAS
PubMed
Google Scholar
Baron A et al. Zinc and protons are coactivators of acid-sensing ion channels. J Biol Chem 2001; 276(38): 35361-.
Article
CAS
PubMed
Google Scholar
Adams CM, Snyder PM, Welsh MJ. Paradoxical stimulation of a DEG/ENaC channel by amiloride. J Biol Chem 1999; 274(22): 15500-.
Article
CAS
PubMed
Google Scholar
Adams CM, Snyder PM, Price MP, Welsh MJ. Protons activate brain Na+ channel 1 by inducing a conformational change that exposes a residue associated with neurodegeneration. J Biol Chem 1998; 273(46): 30204-.
Article
CAS
PubMed
Google Scholar
Bianchi L et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: Implications for necrosis initiation. Nat Neurosci 2004; 7(12): 1337-4.
Article
CAS
PubMed
Google Scholar
Yamamura H, Ugawa S, Ueda T et al. Protons activate the δ-subunit of the epithelial Na+ channel. J Biol Chem 2004; 279: 12529-4.
Article
CAS
PubMed
Google Scholar
Benos DJ. Sensing tension: Recognizing ENaC as a stretch sensor. Hypertension 2004; 44(5): 616-.
Article
CAS
PubMed
Google Scholar
Tavernarakis N, Driscoll M. Mechanotransduction in Caenorhabditis elegans: The role of DEG/ENaC ion channels. Cell Biochem Biophys 2001; 35(1): 1–18.
Article
CAS
PubMed
Google Scholar
Ji HL, Fuller CM, Benos DJ. Osmotic pressure regulates alpha beta gamma rENaC expressed in Xenopus oocytes. Am J Physiol 1998; 275(5): C1182-0.
CAS
PubMed
Google Scholar
Kizer N, Guo XL, Hruska K. Reconstitution of stretch-activated cation channels by expression of the alpha subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci USA 1997; 94(3): 1013-.
Article
CAS
PubMed
Google Scholar
Le KT, Babinski K, Seguela P. Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 1998; 18: 7152-.
CAS
PubMed
Google Scholar
Torres GE, Egan TM, Voigt MM. Hetero-oligomeric assembly of P2X receptor subunits. J Biol Chem 1999; 274: 6653-.
Article
CAS
PubMed
Google Scholar
Jones CA, Vial C, Sellers LA et al. Functional regulation of P2X6 receptors by N-linked glycosylation: Identification of a novel alpha beta-methylene ATP-sensitive phenotype. Mol Pharmacol 2004; 65(4): 979-5.
Article
CAS
PubMed
Google Scholar
Wiley JS, Dubyak GR. Extracellular adenosine triphosphate increases cation permeability of chronic lymphocytic leukemic lymphocytes. Blood 1989; 73: 1316-5.
CAS
PubMed
Google Scholar
Pizzo P, Zanovello P, Bronte V, Di Virgilio F. Extracellular ATP causes lysis of mouse thymocytes and activates a plasma membrane ion channel. Biochem J 1991; 274: 139-4.
CAS
PubMed
Google Scholar
Baricordi OR, Ferrari D, Melchiorri L et al. An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 1996; 87: 682-0.
CAS
PubMed
Google Scholar
Balzer M, Lintschinger B, Groschner K. Evidence for a role of Trpproteins in the oxidative stress-induced membrane conductancesof porcine aortic endothelial cells. Cardiovasc Res 1999; 42: 543-.
Article
CAS
PubMed
Google Scholar
Arnon A, Hamlyn JM, Blaustein MP. Sodium entry via store-operated channels modulates calcium signaling in arterial myocytes. Am J Physiol 2000; 278: C163-3.
CAS
Google Scholar
Faurskov B, Bjerregaard HF. Evidence for cadmium mobilization of intracellular calcium through a divalent cation receptor in renal distal epithelial A6 cells. Pflugers Arch 2002; 445(1): 40–50.
Article
CAS
PubMed
Google Scholar
Hogstrand C, Verbost PM, Wendelaar Bonga SE. Inhibition of human erythrocyte calcium ATPase by zinc. Toxicology 1999; 133(2-): 139-5.
Article
CAS
PubMed
Google Scholar
Acuna-Castillo C, Morales B, Huidobro-Toro JP. Zinc and copper modulate differentially the P2X4 receptor. J Neurochem 2000; 74: 1529-7.
Article
CAS
PubMed
Google Scholar
Kellerman D, Evans R, Mathews D, Shaffer C. Inhaled P2Y2 receptor agonists as a treatment for patients with cystic fibrosis lung disease. Adv Drug Deliv Rev 2002; 54: 1463-4.
Article
CAS
PubMed
Google Scholar
Cloutier MM, Guernsey L, Sha'afi RI. Duramycin increases intracellular calcium in airway epithelium. Membr Biochem 1993; 10: 107-8.
Article
CAS
PubMed
Google Scholar
Lansley AB, Sanderson MJ. Regulation of airway ciliary activity by calcium: Simultaneous measurement of beat frequency and intracellular calcium. Biophys J 1999; 77: 629-8.
Article
CAS
PubMed
Google Scholar
Korngreen A, Ma W, Priel Z, Silberberg SD. Extracellular ATP stimulates directly a cation-selective channel in rabbit airway ciliated epithelial cells. J Physiol 1998; 508: 703-0.
Article
CAS
PubMed
Google Scholar
Ma W, Korngreen A, Uzlaner N et al. Extracellular sodium regulates airway ciliary beat motility by inhibiting a P2X receptor. Nature 1999; 400: 894-.
Article
CAS
PubMed
Google Scholar
Amuzescu B, Segal A, Flonta ML et al. Zinc is a voltage-dependent blocker of native and heterologously expressed epithelial sodium channels. Pflugers Arch 2003; 446: 69–77.
CAS
PubMed
Google Scholar
Sheng S, Perry CJ, Kleyman TR. External nickel inhibits epithelial sodium channels by binding histidine residues within the extracellular domains of alpha and gamma subunits and reducing channel open probability. J Biol Chem 2002; 277: 50098-11.
Article
CAS
PubMed
Google Scholar
Sheng S, Perry CJ, Kleyman TR. Extracellular zinc activates epithelial Na+ channels by eliminating Na+ self-inhibition. J Biol Chem 2004; 279: 31687-6.
Article
CAS
PubMed
Google Scholar
Sheng S, Burns JB, Kleyman TR. Extracellular histidine residues crucial for Na+ self-inhibition of epithelial Na+ channels. J Biol Chem 2004; 279: 9743-.
Article
CAS
PubMed
Google Scholar
Cucu D, Simaels J, Van Driessche W, Zeiske W. External Ni2+ and ENaC in A6 cells: Na+ current stimulation by competition at a binding site for amiloride and Na+. J Membr Biol 2003; 194(1): 33–45.
Article
CAS
PubMed
Google Scholar
O'Grady SM, Lee SY. Chloride and potassium channel function in alveolar epithelial cells. Am J Physiol 2003; 284: L689-00.
Google Scholar
Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl- secretion by benzimidazolones: I. Direct activation of a calcium-activated K+ channel. Am J Physiol 1996; 271: L775-4.
CAS
PubMed
Google Scholar
Frindt G, Palmer LG. Apical potassium channels in the rat connecting tubule. Am J Physiol 2004; 287: F1030-.
CAS
Article
Google Scholar
Wei Y, Chen YJ, Li D et al. Dual effect of insulin-like growth factor on the apical 70-pS channel in the thick ascending limb of rat kidney. Am J Physiol 2004; 286: C1258-3.
Article
CAS
Google Scholar
Satlin LM. Developmental regulation of expression of renal potassium secretory channels. Curr Opin Nephrol Hypertens 2004; 13: 445-0.
Article
CAS
PubMed
Google Scholar
Joiner WJ, Basavappa S, Vidyasagar S et al. Active K+ secretion through multiple KCa-type channels and regulation of IKCa channels in rat proximal colon. Am J Physiol 2003; 285: G185-6.
CAS
Google Scholar
Truong-Tran AQ, Carter J, Ruffin R, Zalewski PD. New insights into the role of zinc in the respiratory epithelium. Immunol Cell Biol 2001; 79: 170-.
Article
CAS
PubMed
Google Scholar
Novick G, Godfrey JC, Pollack RL, Wilder HR. Zinc-induced suppression of inflammation in the respiratory tract, caused by infection with human rhinovirus and other irritants. Med Hypotheses 1997; 49: 347-7.
Article
CAS
PubMed
Google Scholar
WWW Reference: http://www.accessdata.fda.gov/scripts/cder/drugsatfda.
Berg K, Bolt G, Anderson H, Owen TC. Zinc potentiates the antiviral action of human IFN-alpha tenfold. J Interferon Cytokine Res 2001; 21: 471-.
Article
CAS
PubMed
Google Scholar
Cho YH, Lee SJ, Kim SW et al. Antibacterial effect of intraprostatic zinc injection in a rat model of chronic bacterial prostatitis. Int J Antimicrob Agents 2002; 19: 576-2.
Article
CAS
PubMed
Google Scholar
Moran J, Addy M, Corry D et al. A study to assess the plaque inhibitory action of a new zinc citrate toothpaste. J Clin Periodontol 2001; 28: 157-1.
Article
CAS
PubMed
Google Scholar
WWW Reference: Higdon J. The Linus Pauling Institute's Micronutrient Information Center: Subject: Zinc, 1-2, 2003.
Walker CF, Black RE. Zinc and the risk for infectious disease. Annu Rev Nutr 2004; 24: 255-5.
Article
CAS
Google Scholar
Truong-Tran AQ, Ruffin RE, Zalewski PD. Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines. Am J Physiol 2000; 279(6): L1172-3.
CAS
Google Scholar
Schwiebert EM, Guggino WB. Abnormal chloride and sodium channel function in cystic fibrosis airway epithelia. In Crystal RG, West JB et al. (eds): Chapter 195 for The Lung: Scientific Foundations. Philadelphia: Lippincott-Raven 1996.
Google Scholar
Krebs NF, Westcott JE, Arnold TD et al. Abnormalities in zinc homeostasis in young infants with cystic fibrosis. Pediatr Res 2000; 48: 256-1.
Article
CAS
PubMed
Google Scholar
Mazzocchi C, Michel JL, Chalencon V et al. Zinc deficiency in mucoviscidosis. Arch Pediatr 2000; 7: 1081-.
Article
CAS
PubMed
Google Scholar
Wang K, Zhou B, Kup Y-M et al. A novel member of the zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 2002; 7: 66–73.
Article
Google Scholar
Duffner-Beattie J, Wang F, Kuo Y-M et al. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 2003; 278: 13398-08.
Article
CAS
Google Scholar
Eide D. The SLC39 family of metal ion transporters. Pflugers Arch 2003; 447(5): 796–800.
Article
PubMed
CAS
Google Scholar
Zalewski PD, Troung-Tran AQ, Grosser D et al. Zinc metabolism in airway epithelium and airway inflammation: Basic mechanisms and clinical targets. A review. Pharmacol Ther 2005; 105: 127-9.
Article
CAS
PubMed
Google Scholar
Hirt M, Nobel S, Barron E. Zinc nasal gel for the treatment of common cold symptoms: A double-blind, placebo-controlled trial. Ear Nose Throat J 2000; 79: 778-2.
CAS
PubMed
Google Scholar
Mossad SB, Macknin ML, Medendorp SV, Mason P. Zinc gluconate lozenges for treating the common cold. A randomized, double-blind, placebo-controlled study. Ann Intern Med 1996; 125: 81-.
CAS
PubMed
Google Scholar
Mossad SB. Effect of zincum gluconicum nasal gel on the duration and symptom severity of the common cold in otherwise healthy adults. QJM 2003; 96: 35–43.
Article
CAS
PubMed
Google Scholar
McBride K, Slotnick B, Margolis FL. Does intranasal application of zinc sulfate produce anosmia in the mouse? An olfactometric and anatomical study. Chem Senses 2003; 28: 659-0.
Article
CAS
PubMed
Google Scholar
Jafek BW, Linschoten MR, Murrow BW. Anosmia after intranasal zinc gluconate use. Am J Rhinol 2004; 18: 137-1.
PubMed
Google Scholar
Brewer GJ. Treatment of Wilson's disease with zinc. J Lab Clin Med 1999; 134: 322-.
Article
CAS
PubMed
Google Scholar
Brewer GJ, Dick RD, Johnson VD et al. Treatment of Wilson's disease with zinc XVI. Treatment through the pediatric years. J Lab Clin Med 2001; 137: 191-.
Article
CAS
PubMed
Google Scholar
Najda J, Stella-Holowiecka B, Machalski M. Low-dose zinc administration as an effective Wilson's disease treatment. Biol Trace Elem Res 2001; 80: 281-.
Article
CAS
PubMed
Google Scholar
Farinati F, Cardin R, D'inca R et al. Zinc treatment prevents lipid peroxidation and increases glutathione availability in Wilson's disease. J Lab Clin Med 2003; 141: 372-.
Article
CAS
PubMed
Google Scholar
Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins polycystin-1, polycystin-2, Polaris, and cystin are co-localized in renal cilia. J Am Soc Nephrol 2002; 13(10): 2508-6.
Article
CAS
PubMed
Google Scholar
Yoder BK, Tousson A, Millican L et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol 2002; 282: F541-2.
CAS
Google Scholar
Guay-Woodford LM. Murine models of polycystic kidney disease: Molecular and therapeutic insights. Am J Physiol 2003; 285: F1034-9.
CAS
Google Scholar
Madsen KM, Tisher CC. Structural–functional relationship along the distal nephron. Am J Physiol 1986; 250: F1-5.
CAS
Google Scholar
Praetorius HA, Spring KR. Bending the MDCK primary cilium increases intracellular calcium. J Membr Biol 2001; 184: 71-.
Article
CAS
PubMed
Google Scholar
Praetorius HA, Spring KR. Removal of the MDCK primary cilium abolishes flow sensing. J Membr Biol 2003; 191: 69–76.
Article
CAS
PubMed
Google Scholar
Nauli SM et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003; 33(2): 129-7.
Article
CAS
PubMed
Google Scholar
Pazour GJ, Rosenbaum JL. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 2002; 12(12): 551-.
Article
CAS
PubMed
Google Scholar
Haycraft CJ, Swoboda P, Taulman PD et al. The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathways and is disrupted in OSM-5 mutant worms. Development 2001; 128: 1493-05.
CAS
PubMed
Google Scholar
Hanaoka K, Qian F, Boletta A et al. Co-assembly of polycystin-1 and polycystin-2 produces unique cation-permeable currents. Nature 2000; 408(6815): 990-.
Article
CAS
PubMed
Google Scholar
Koulen P, Cai Y, Geng L et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 2002; 4(3): 191-.
Article
CAS
PubMed
Google Scholar
Chen XZ et al. Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 1999; 401(6751): 383-.
CAS
PubMed
Google Scholar
Liu Y, Li Q, Tan M et al. Modulation of the human polycystin-L channel by voltage and divalent cations. FEBS Lett 2002; 525(1-): 71-.
Article
CAS
PubMed
Google Scholar
Rohatgi R, Greenberg A, Burrow CR et al. Sodium transport in autosomal recessive polycystic kidney disease (ARPKD) cyst-lining epithelial cells. J Am Soc Nephrol 2003; 14(4): 827-6.
Article
CAS
PubMed
Google Scholar
Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: The clinical experience in North America. Pediatrics 2003; 111(5): 1072-0.
Article
PubMed
Google Scholar
Ackerman MJ, Clapham DE. Ion channels -basic science and clinical disease. N Engl J Med 1997; 336: 1575-6.
Article
CAS
PubMed
Google Scholar
Aguilar-Bryan L, Bryan J, Nakazaki M. Of mice and men: K(ATP) channels and insulin secretion. Recent Prog Horm Res 2001; 56: 47–68.
Article
CAS
PubMed
Google Scholar
Howell SL, Tyhurst M. Insulin secretion: The effector system. Experientia 1984; 40: 1098.
Article
CAS
PubMed
Google Scholar
Rhodes CJ. Type 2 diabetes -a matter of beta cell life and death? Science 2005; 307: 380-.
Article
CAS
PubMed
Google Scholar
Chausner AB. Zinc, insulin, and diabetes. J Am Coll Nutr 1998; 17: 109-5.
Google Scholar
Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr 2004; 24: 151-2.
Article
CAS
PubMed
Google Scholar
Hazama A, Hayashi S, Okada Y. Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 1998; 437: 31-.
Article
CAS
PubMed
Google Scholar
Taylor AL, Kudlow BA, Marrs KL et al. Bioluminescence detection of ATP release mechanisms in epithelia. Am J Physiol 1998; 275: C1391-06.
CAS
PubMed
Google Scholar