Skip to main content
Log in

Apple NPR1 homologs and their alternative splicing forms may contribute to SA and disease responses

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The non-expressor of pathogenesis-related genes 1 (NPR1) plays essential roles in the salicylic acid (SA) signal pathway and in systemic acquired resistance (SAR) responses. Although a genome-wide analysis of NPR1 gene family has been conducted in some plant species, little is known about these genes in apple (Malus spp.). In this study, eight NPR1 homologs were identified within the apple genome and 12 different transcripts were cloned by the reverse transcription-polymerase chain reaction. Based on these sequences, the gene structures and sequence alignment of the apple NPR1 homologs were analyzed. Phylogenetic analysis showed that apple NPR1 homologs could be classified into three groups as in Arabidopsis. Expression analysis demonstrated that NPR1 homologs showed different expression patterns in various tissues of apple. Under the induction of SA and MeJA, the transcription levels of some members were upregulated in leaves. Meantime, some NPR1 genes also showed significantly different expression levels between “Pacific Rose” and Malus baccata after inoculation with Marssonina coronaria. With the most similarity on amino acid sequence and expression pattern, MdNPR1 may function as a key regulator in SAR-like AtNPR1. These results suggested that the NPR1 genes may play an important role in plant immune responses, and their alternative splicing may contribute to disease resistance. Our study provides essential information about the NPR1 homologs in apple and contributes to the understanding of NPR1 homologs functions in other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428. doi:10.1111/j.1744-7909.2011.01043.x

    Article  CAS  PubMed  Google Scholar 

  • Aravind L, Koonin EV (1999) Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285:1353–1361. doi:10.1006/jmbi.1998.2394

    Article  CAS  PubMed  Google Scholar 

  • Backer R, Mahomed W, Reeksting BJ, Engelbrecht J, Ibarra-Laciette E, van den Berg N (2015) Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (mill. Frontiers in plant science 6

  • Baldwin AS (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683. doi:10.1146/annurev.immunol.14.1.649

    Article  CAS  PubMed  Google Scholar 

  • Canet JV, Dobon A, Roig A, Tornero P (2010) Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell Environ 33:1911–1922. doi:10.1111/j.1365-3040.2010.02194.x

    Article  CAS  PubMed  Google Scholar 

  • Canet JV, Dobon A, Fajmonova J, Tornero P (2012) The BLADE-ON-PETIOLE genes of Arabidopsis are essential for resistance induced by methyl jasmonate. BMC Plant Biol 12. doi:10.1186/1471-2229-12-199

  • Cao H, Bowling SA, Gordon AS, Dong XN (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired-resistance. Plant Cell 6:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong XN (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Dang ZG, Gao H, Wang LC, YM L, Zhao ZY (2011) Evaluation and physiological analysis of resistance of apple (Malus domestica Borkh.) cultivars to apple brown spot [Marssonina mali (P. Henn.) Ito]. Plant Physiology Journal 47(7):691–698

    Google Scholar 

  • Del Carratore R, Magaldi E, Podda A, Beffy P, Migheli Q, Maserti BE (2011) A stress responsive alternative splicing mechanism in Citrus Clementina leaves. J Plant Physiol 168:952–959. doi:10.1016/j.jplph.2010.11.016

    Article  CAS  PubMed  Google Scholar 

  • Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290. doi:10.1105/tpc.12.2.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong XN (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552. doi:10.1016/j.pbi.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi:10.1146/annurev.phyto.42.040803.140421

    Article  CAS  PubMed  Google Scholar 

  • Endah R, Beyene G, Kiggundu A, van den Berg N, Schluter U, Kunert K, Chikwamba R (2008) Elicitor and Fusarium-induced expression of NPR1-like genes in banana. Plant Physiol Bioch 46:1007–1014. doi:10.1016/j.plaphy.2008.06.007

    Article  CAS  Google Scholar 

  • Fan WH, Dong XN (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389. doi:10.1105/tpc.001628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Wang F, Gao H, Wang L, Xu J, Zhao Z (2011) Pathogen-induced MdWRKY1 in ‘Qinguan’ apple enhances disease resistance. Journal of Plant Biology 54:150–158. doi:10.1007/s12374-011-9151-1

    Article  CAS  Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Rella GM, Meier B, Dincher S, Staub T, Uknes S, Metraux JP, Kessmann M, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70. doi:10.1046/j.1365-313X.1996.10010061.x

    Article  CAS  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232. doi:10.1038/nature11162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaëlle LH, Sibylle F, Flore K-M, Miclot A-S, Heitz T, Pere M, Bertsch C, Chong J (2011) Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234(2):405--417

  • Gfeller A, Liechti R, Farmer EE (2006) Arabidopsis jasmonate signaling pathway Science’s STKE: signal transduction knowledge. Environment 2006:cm1-cm1. doi:10.1126/stke.3222006cm1

    Google Scholar 

  • Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448. doi:10.1105/tpc.104.030536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou P, Xie ZY, Zhang L, Song Z, Mi J, He Y, Li YF (2011) Comparison of three different methods for total RNA extraction from Fritillaria unibracteata: a rare Chinese medicinal plant. J Med Plants Res 5:2834–2838

    CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe In 16:851–858. doi:10.1094/mpmi.2003.16.10.851

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328. doi:10.1146/annurev.arplant.53.100301.135207

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Delaney TP (2002) Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32:151–163. doi:10.1046/j.1365-313X.2001.01411.x

    Article  CAS  PubMed  Google Scholar 

  • Kinkema M, Fan WH, Dong XN (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350. doi:10.1105/tpc.12.12.2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Molecular plant-microbe interactions: MPMI 8(6):863–870

    Article  CAS  PubMed  Google Scholar 

  • Le Henanff G, Heitz T, Mestre P, Mutterer J, Walter B, Chong J (2009) Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC Plant Biol 9. doi:10.1186/1471-2229-9-54

  • Li MM, Xu JH, Qiu ZH, Zhang J, Ma FW, Zhang JK (2014) Screening and identification of resistance related proteins from apple leaves inoculated with Marssonina coronaria (EII. & J. J. Davis). Proteome Sci 12. doi:10.1186/1477-5956-12-7

  • Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J 41(2):304--318

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 25, 402--408. doi:10.1006/meth.2001.1262

  • Maier F, Zwicker S, Huckelhoven A, Meissner M, Funk J, Pfitzner AJP, Pfitzner UM (2011) Nonexprssor of pathogensis-related proteins1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol Plant Pathol 12:73–91. doi:10.1111/j.1364-3703.2010.00653.x

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant-Microbe Interact 20:1568–1580. doi:10.1094/mpmi-20-12-1568

    Article  CAS  PubMed  Google Scholar 

  • Mastrangelo AM, Marone D, Laido G, De Leonardis AM, De Vita P (2012) Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity. Plant science: an international journal of experimental plant biology 185-186:40–49. doi:10.1016/j.plantsci.2011.09.006

    Article  CAS  Google Scholar 

  • Metraux JP, Ahlgoy P, Staub T, Speich J, Steinemann A, Ryals J, Ward E (1991) Induced systemic resistance in cucumber in response to 2,6-dichloro-isonicotinic acid and pathogens. Advances in Molecular Genetics of Plant-Microbe Interactions 1:432–439

    Article  Google Scholar 

  • Moreau M, Tian M, Klessig DF (2012) Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res 22:1631–1633. doi:10.1038/cr.2012.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhtar MS, Nishimura MT, Dangl J (2009) NPR1 in plant defense: it’s not over till it’s turned over. Cell 137:804–806. doi:10.1016/j.cell.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  • Niggeweg R, Thurow C, Kegler C, Gatz C (2000) Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J Biol Chem 275:19897–19905. doi:10.1074/jbc.M909267199

    Article  CAS  PubMed  Google Scholar 

  • Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18:402–411. doi:10.1016/j.tplants.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  • Peraza-Echeverria S, Santamaría JM, Fuentes G, de los Ángeles Menéndez-Cerón M, Vallejo-Reyna MÁ, Herrera-Valencia VA (2012) The NPR1 family of transcription cofactors in papaya: insights into its structure, phylogeny and expression. Genes & Genomics 34:379–390. doi:10.1007/s13258-011-0218-7

    Article  CAS  Google Scholar 

  • Pieterse CM, Van Loon L (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464. doi:10.1016/j.pbi.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. In: VanAlfen NK, Bruening G, Leach JE (eds) Annual review of phytopathology 49. Annual review of phytopathology, pp. 317–343. doi:10.1146/annurev-phyto-073009-114447

    Google Scholar 

  • Ryals J et al. (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9:425–439. doi:10.1105/tpc.9.3.425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shao Y, Zhang H, He H, Cheng B, Xiang Y (2013) Molecular cloning and characterization of orthologues of NPR1 gene from poplar. J Phytopathol 161:35–42. doi:10.1111/jph.12002

    Article  CAS  Google Scholar 

  • Somssich IE (2003) Closing another gap in the plant SAR puzzle. Cell 113:815–816. doi:10.1016/s0092-8674(03)00473-2

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872. doi:10.1016/j.cell.2009.03.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sticher L, MauchMani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270. doi:10.1146/annurev.phyto.35.1.235

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N (2001) Direct visualization of protein interactions in plant cells. Nat Biotechnol 19:769–772. doi:10.1038/90831

    Article  CAS  PubMed  Google Scholar 

  • Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW (2012) Alternative splicing in plants--coming of age. Trends Plant Sci 17:616–623. doi:10.1016/j.tplants.2012.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahlgoy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094. doi:10.1105/tpc.3.10.1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y et al. (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647. doi:10.1016/j.celrep.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Li M, Ke X, Li C, Zou Y, Liang D, Ma F (2013) Evaluation of Malus germplasm resistance to marssonina apple blotch. Eur J Plant Pathol 136:597–602. doi:10.1007/s10658-013-0190-y

    Article  Google Scholar 

  • Yocgo RE, Creissen G, Kunert K, Chikwamba R (2012) Two different banana NPR1-like coding sequences confer similar protection against pathogens in Arabidopsis. Trop Plant Biol 5:309–316. doi:10.1007/s12042-012-9112-y

    Article  CAS  Google Scholar 

  • Zhang YL, Fan WH, Kinkema M, Li X, Dong XN (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. P Natl Acad Sci USA 96:6523–6528. doi:10.1073/pnas.96.11.6523

    Article  CAS  Google Scholar 

  • Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D, Li X (2006) Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J 48:647–656. doi:10.1111/j.1365-313X.2006.02903.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Qiao YS, Lv D, Gao ZH, Qu SC, Zhang Z (2012) Malus hupehensis NPR1 induces pathogenesis-related protein gene expression in transgenic tobacco. Plant Biol 14(Suppl 1):46–56. doi:10.1111/j.1438-8677.2011.00483.x

    Article  CAS  PubMed  Google Scholar 

  • Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe In 13:191–202. doi:10.1094/mpmi.2000.13.2.191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the earmarked fund for China Agriculture Research System (CARS-28). We also thank Prof. Pengmin Li and Dr. Mingjun Li for their comments and suggestions on improving the manuscript.

Data archiving statement

All the apple NPR1 gene homologs cDNA sequence cloned from apple cultivar ‘Pacific Rose’ were submitted to GenBank. Their gene ID and GenBank accession numbers were list as follows: MdNPR1a (KU166911), MdNPR1b (KU166912), MdNPR2a (KU166913), MdNPR2b (KU166914), MdNPR3 (KU166915), MdNPR4a (KU166916), MdNPR4b (KU166917), MdNPR5a (KU166921), MdNPR5b (KU166920), MdNPR6 (KU166922), MdNPR7 (KU166918), and MdNPR8 (KU166919). The apple NPR1 homolog gene sequences from ‘Qinguan’ were displayed in the supplementary Fig. S1~S8.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junke Zhang or Lingfei Xu.

Additional information

Communicated by A.M. Dandekar

Electronic supplementary material

Supplementary Table S1

Primer sequences used for NPR1 homologs gene cloning and qRT-PCR (XLSX 10 kb)

Supplementary Fig. S1-S8

Alignment of the MdNPR1–NPR8 full-length coding sequences from ‘Qinguan’ and ‘Pacific rose’ and their corresponding genome sequences. The prefix ‘Pr′ or ‘Qg’ before the gene ID means the sequence cloned from apple cultivar ‘Pacific rose’ or ‘Qinguan’. (DOC 10969 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jiao, P., Zhang, C. et al. Apple NPR1 homologs and their alternative splicing forms may contribute to SA and disease responses. Tree Genetics & Genomes 12, 92 (2016). https://doi.org/10.1007/s11295-016-1050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1050-7

Keywords

Navigation