Skip to main content
Log in

Species-specific alleles at a β-tubulin gene show significant associations with leaf morphological variation within Quercus petraea and Q. robur populations

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Quercus petraea and Q. robur are largely sympatric oak species in western and central Europe and known for their intensive genetic exchange which has made the discovery of species-diagnostic markers a huge challenge. Various natural white oak populations (Q. petraea/Q. robur including mixed stands) were investigated for their variability and differentiation patterns at a β-tubulin gene (qutub8) in a European-wide survey. This gene was chosen as a possible candidate among loci subjected to selection and maintaining integrity between species. Two frequent alleles depicted as indels within qutub8’s first intron showed remarkably high interspecific genetic differentiation, with Weir and Cockerham’s theta per allele values ranging from 0.17 to 0.30 for one allele and from 0.04 to 0.19 for the other allele in such mixed oak stands where the multi-allelic qutub8 locus showed significant interspecific F ST . For three mixed stands, qutub8’s F ST significantly departed from the expected neutral differentiation patterns (F ST ranging from 0.063 to 0.080 for this multi-allelic marker) and thus could be influenced by selection. Significant associations were found between genotypic variation and leaf dimensions as well as leaf structure patterns, after having accounted for species and stand effects. Qutub8 represents a locus that exhibits significant species differentiation and is linked to morphological discriminant traits. Consequently, qutub8 likely contributes to species divergence within the European white oak complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadie P, Roussel G, Dencausse B et al (2012) Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species (Quercus robur L. and Quercus petraea (Matt) Liebl.). J Evol Biol 25:157–173

    Article  CAS  PubMed  Google Scholar 

  • Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996) Mating system and asymmetric hybridisation in a mixed stand of European oaks. Evolution 50:900–908

    Article  Google Scholar 

  • Bao Y, Kost B, Chua NH (2001) Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    Article  CAS  PubMed  Google Scholar 

  • Bardini M, Lee D, Donini P et al (2004) Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome 47:281–291

    Article  CAS  PubMed  Google Scholar 

  • Barreneche T, Bodenes C, Lexer C et al (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor Appl Genet 97:1090–1103

    Article  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Royal Soc Lond, Biol Sci 263:1619–1626

    Article  Google Scholar 

  • Bodénès C, Joandet S, Laigret F, Kremer A (1997a) Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. Heredity (Edinb) 78:433–444

    Article  Google Scholar 

  • Bodénès C, Labbé T, Pradère S, Kremer A (1997b) General vs local differentiation between two closely related white oak species. Mol Ecol 6:713–724

    Article  Google Scholar 

  • Bodénès C, Chancerel E, Gailing O et al (2012) Comparative mapping in the Fagaceae and beyond using EST-SSRs. BMC Plant Biol 12:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruhat A, Tourmente S, Chapel S et al (1990) Regulatory elements in the first intron contribute to transcriptional regulation of the ß3 tubulin gene by 20-hydroxyecdysone in Drosophila Kc cells. Nucleic Acids Res 18:2861–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camus A (1954) Les Chênes, Monographie du genre Quercus. P. Lechevalier, Paris

    Google Scholar 

  • Casasoli M, Derory J, Morera-Dutrey C et al (2005) Comparison of QTLs for adaptive traits between oak and chestnut based on an EST consensus map. Genetics 172:533–546

    Article  PubMed  Google Scholar 

  • Clancy M, Hannah LC (2002) Splicing of the Maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol 130:918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtu AL, Gailing O, Leinemann L, Finkeldey R (2007) Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biol 9:116–126

    Article  CAS  PubMed  Google Scholar 

  • Cyr RJ (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Dev Biol 10:153–180

    Article  CAS  Google Scholar 

  • Dering M, Lewandowski A (2007) Unexpected disproportion observed in species composition between oak mixed stands and their progeny populations. Ann For Sci 64:413–418

    Article  Google Scholar 

  • Dussouchaud O (2002) Master thesis: cartographie génétique comparée de chênes blancs européens à partir de croisement inter et intra spécifiques. Université de Montpellier II, Rapport de DEA

    Google Scholar 

  • Forsdyke DR (1995) Conservation of stem–loop potential in introns of snake venom phospholipase A2 genes. An application of FORS-D analysis. Mol Biol Evol 12:1157–1165

    CAS  Google Scholar 

  • Gailing O (2008) QTL analysis of leaf morphological characters in a Quercus robur full‐sib family (Q. robur × Q. robur ssp. slavonica). Plant Biol 10:624–634

    Article  CAS  PubMed  Google Scholar 

  • Gailing O, Kremer A, Steiner W, Hattemer HH, Finkeldey R (2005) Results on quantitative trait loci for flushing date in oaks can be transferred to different segregating progenies. Plant Biol 7:1–10

    Article  Google Scholar 

  • Gallegos JE, Rose AB (2015) The enduring mystery of intron-mediated enhancement. Plant Sci 237:8–15

    Article  CAS  PubMed  Google Scholar 

  • Gerber S, Chadœuf J, Gugerli F et al (2014) High rates of gene flow by pollen and seed in oak populations across Europe. PLoS One 9, e85130

    Article  PubMed  PubMed Central  Google Scholar 

  • Goicoechea PG, Petit RJ, Kremer A (2012) Detecting the footprints of divergent selection in oaks with linked markers. Heredity (Edinb) 109:361–371

    Article  CAS  Google Scholar 

  • Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Guichoux E, Garnier-Géré P, Lagache L et al (2013) Outlier loci highlight the direction of introgression in oaks. Mol Ecol 22:450–462

    Article  CAS  PubMed  Google Scholar 

  • Hubert F, Grimm GW, Jousselin E et al (2014) Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Syst Biodivers 12:405–423

    Article  Google Scholar 

  • Ji S, Lu Y, Li J et al (2002) A ß-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem Biophys Res Commun 296:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Kleinschmit J, Kleinschmit JGR (2000) Quercus robur-Quercus petraea: a critical review of the species concept. Glasnik za Šumske Pokuse 37:441–452

    Google Scholar 

  • Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed α-tubulin genes. Plant Cell 4:539–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer A, Dupouey JL, Deans JD et al (2002) Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann For Sci 59:777–787

    Article  Google Scholar 

  • Lepais O, Roussel G, Hubert F, Kremer A, Gerber S (2013) Strength and variability of postmating reproductive isolating barriers between four European white oak species. Tree Genet Genomes 9:841–853

    Article  Google Scholar 

  • Lexer C, Kremer A, Petit RJ (2006) Comment: shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15:2007–2012

    Article  CAS  PubMed  Google Scholar 

  • Macaya-Sanz D, Suter L, Joseph J, Barbará T, Alba N, González-Martínez SC, Widmer A, Lexer C (2011) Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species. Heredity 107:478–486

  • Mariette S, Cottrell J, Csaikl UM et al (2002) Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genet 51:72–79

    Google Scholar 

  • Muir G, Schlötterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neophytou C, Gärtner SM, Vargas Gaetel R, Michiels HG (2015) Genetic variation of central European oaks: shaped by evolutionary factors and human intervention. Tree Genet Genomes 11:79

    Article  Google Scholar 

  • Paradez A, Wright A, Ehrhardt DW (2006) Microtubule cortical array organization and plant cell morphogenesis. Curr Opin Plant Biol 9:571–578

    Article  CAS  PubMed  Google Scholar 

  • Parra G, Bradnam K, Alan BR, Korf L (2011) Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res 13:5328–5337

    Article  Google Scholar 

  • Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2003) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  Google Scholar 

  • Porth I, El-Kassaby YA (2014) Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6:283–295

    Article  Google Scholar 

  • Porth I, Koch M, Berenyi M, Burg A, Burg K (2005a) Identification of adaptation-specific differences in mRNA expression of sessile and pedunculate oak based on osmotic-stress-induced genes. Tree Physiol 25:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Porth I, Scotti-Saintagne C, Barreneche T, Kremer A, Burg K (2005b) Linkage mapping of osmotic stress induced genes of oak. Tree Genet Genomes 1:31–40

    Article  Google Scholar 

  • Porth I, Klapšte J, Skyba O et al (2013) Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. New Phytol 200:710–726

    Article  CAS  PubMed  Google Scholar 

  • Rose AB, Elfersi T, Parra G, Korf I (2008) Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 20:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saintagne C, Bodénès C, Barreneche T et al (2004) Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity (Edinb) 92:20–30

    Article  CAS  Google Scholar 

  • Samuel R, Pinsker W, Ehrendorfer F (1995) Electrophoretic analysis of genetic variation within and between populations of Quercus cerris, Q. pubescens, Q. petraea and Q. robur (Fagaceae). Bot Acta 108:290–299

    Article  CAS  Google Scholar 

  • Scotti-Saintagne C, Mariette S, Porth I et al (2004a) Genome scanning for interspecific differentiation between two closely related oak species (Quercus robur L. and Q. petraea (Matt.) Liebl.). Genetics 168:1615–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scotti-Saintagne C, Bodénès C, Barreneche T et al (2004b) Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor Appl Genet 109:1648–1659

    Article  CAS  PubMed  Google Scholar 

  • Snustad DP, Haas NA, Kopczak SD, Silflow CD (1992) The small genome of Arabidopsis contains at least nine expressed ß-tubulin genes. Plant Cell 4:549–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Streiff R, Labbe T, Bacilieri R et al (1998) Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7:317–328

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies and oaks. Taxon 25:233–239

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

  • Zoldos V, Papes D, Cerbah M et al (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Ulrike Csaikl, Jan Jensen, Alexis Ducousso, Bernd Degen, Sandor Bordacs, Giuseppe Vendramin and Piero Bruschi, Pablo Goicoechea and Santiago Espinel, Martin Lascoux, Felix Gugerli and Reiner Finkeldey, Joukje Buiteveld and Joan Cottrell for the provision of oak leaf samples and data of the morphological traits. We also thank Guy Roussel (INRA BIOGECO) for providing the Q. petraea full-sib family samples. We acknowledge two anonymous reviewers’ and the associate editor’s comments that helped improving the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilga Porth.

Ethics declarations

Funding

We acknowledge funding through the Commission of the European Communities, Community research programme ‘Quality of Life and Management of Living Resources’ (Project OAKFLOW QLK5-2000-00960) for this study.

Data archiving statement

Sequence information of qutub8 is available under GenBank accession AY704406.

Sampling locations, morphological data and genotypes are available as supplement material (Tables S3, S4, S5, S6).

Additional information

Communicated by F. Gugerli

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Fig. S1. Map with spatial positions (distances in cm) of adult trees indicating the species identity (152 Quercus robur and 224 Q. petraea as well as 16 individuals with uncertain species identity) based on leaf morphology measures (U. Csaikl, pers. com.) and the presence of two sampled alleles in the intensively studied plot ISP SH (Sigmundsherberg). (PDF 147 kb)

ESM 2

Fig. S2. Histograms with frequency distributions of the 14 sampled alleles at qutub8 (where allele 1 is corresponding to a222 and allele 10 is corresponding to a236) based on sampling individuals from naturally regenerated mixed Quercus robur/Q. petraea stands at 10 European locations. The ISP IDs are provided in Table 1. White columns: Q. petraea; black columns: Q. robur. (PDF 108 kb)

ESM 3

Table S1. Phenotypic correlations between leaf morphology traits in oak. (XLSX 23 kb)

ESM 4

Table S2. A. Associations for qutub8 allele variation and variability in leaf morphology employing allele dosage (for alleles a222, a236) and genotypic class models (comprehensive results). B. Associations for qutub8 allele variation and variability in leaf morphology employing allele dosage (for alleles a222, a236) and genotypic class models in the intensively studied plot ISP SH (Sigmundsherberg). (XLSX 17 kb)

ESM 5

Table S3. Sampling locations and genotype data for all ISPs. (XLS 114 kb)

ESM 6

Table S4. Sampling locations and genotype data for ISP SH. (XLS 76 kb)

ESM 7

Table S5. Morphology data for ISP SH. (XLSX 155 kb)

ESM 8

Table S6. Sampling locations and phenotype data for all ISPs. (XLS 1297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porth, I., Garnier-Géré, P., Klápštĕ, J. et al. Species-specific alleles at a β-tubulin gene show significant associations with leaf morphological variation within Quercus petraea and Q. robur populations. Tree Genetics & Genomes 12, 81 (2016). https://doi.org/10.1007/s11295-016-1041-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1041-8

Keywords

Navigation