Skip to main content

Advertisement

Log in

Nuclear genetic variation of Rosa odorata var. gigantea (Rosaceae): population structure and conservation implications

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Rosa odorata var. gigantea is one of the most important ancestors of modern roses, which owns many merit traits including large flower, early flowering, and tea scent. Due to habitat loss and fragmentation, it has been listed as a rare and endangered species in China. In this study, a total of 424 accessions from 27 locations across its major distribution range were sampled. Its genetic diversity and population structure were assessed using a combination of seven nuclear microsatellite markers and one single-copy nuclear gene. Moderate to high within-population genetic diversity and moderate differentiation among populations were revealed despite its narrow distribution. The sampled 27 populations were resolved into two genetic clusters with limited contemporary and historical gene flows. The Red River Fault Zone was inferred to be a physical or geographical barrier to gene flow between these two genetic clusters. Genetic distances were significantly associated with geographic distances, indicating the isolation-by-distance model. Our ecological niche modeling indicated that R. odorata var. gigantea had high current potential areas in the central Yunnan province and substantial losses of high potential distribution areas in the western Yunnan in the future. Two detected clusters showed significant genetic differentiation and represented two separate evolutionary lineages, which should be recognized as two evolutionary significant units (ESUs) for conservation concerns. These results could be applied for the decision-making and conservation planning for this important species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akciz S, Burchfiel BC, Crowley JL, Yin JY, Chen LZ (2008) Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China. Geosphere 4:292–314

    Article  Google Scholar 

  • Anderson RP, Martínez-Meyer E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Conserv 116:167–179

    Article  Google Scholar 

  • Avise JC (1996) Conservation genetics: case histories from nature. Chapman & Hall, New York

    Book  Google Scholar 

  • Bai JR, Zhang QX, Pan HT (2009) Investigation on germplasm resources of the genus Rosa L. in Northwest Yunnan. J Plant Genet Resour 10:218–223 (in Chinese)

    Google Scholar 

  • Banu S, Bhagwat RM, Kadoo NY, Lagu MD, Gupta VS (2010) Understanding the genetic structure of Symplocos laurina Wall. populations using nuclear gene markers. Genetica 138:197–210

    Article  PubMed  Google Scholar 

  • Barrett SCH, Kohn R (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics conservation of rare plants. Oxford University Press, New York, pp 1–30

    Google Scholar 

  • Beerli P (2008) Migrate version 3.0: a maximum likelihood and Bayesian estimator of gene flow using the coalescent. http://popgen.scs.edu/migrate.html

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations using a coalescent approach. Proc Natl Acad Sci U S A 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caicedo AL, Schaal BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol 13:1871–1882

    Article  CAS  PubMed  Google Scholar 

  • Cardeñosa D, Hyde J, Caballero S (2014) Genetic diversity and population structure of the pelagic thresher shark (Alopias pelagicus) in the Pacific Ocean: evidence for two evolutionarily significant units. PloS one 9:e110193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavers S, Navarro C, Lowe AJ (2003) A combination of molecular markers identifies evolutionarily significant units in Cedrela odorata L. (Meliaceae) in Costa Rica. Conserv Genet 4:571–580

    Article  CAS  Google Scholar 

  • Chen H, Morrell PL, de la Cruz M, Clegg MT (2008) Nucleotide diversity and linkage disequilibrium in wild avocado (Persea americana Mill.). J Hered 99:382–389

  • Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  PubMed  Google Scholar 

  • Dane F, Liu JR, Zhang CK (2007) Phylogeography of the bitter apple, Citrullus colocynthis. Genet Resour Crop Ev 54:327–336

    Article  Google Scholar 

  • Dieringer D, Schlštterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ebert D, Haag C, Kirkpatrick M, Riek M, Hottinger JW, Pajunen VI (2002) A selective advantage to immigrant genes in a Daphnia metapopulation. Science 295:485–488

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plants conservation. Annual Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Escobar LMD, Andrade-López J, Farias IP, Hrbek T (2015) Delimiting evolutionarily significant units of the fish, Piaractus brachypomus (Characiformes: Serrasalmidae), from the Orinoco and Amazon River basins with insight on routes of historical connectivity. J Hered 106:428–438

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    Article  PubMed  Google Scholar 

  • Forrest AD, Hollingsworth ML, Hollingsworth PM, Sydes C, Bateman RM (2004) Population genetic structure in European populations of Spiranthes romanzoffiana set in the context of other genetic studies on orchids. Heredity 92:218–227

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Fu LG (1992) China plant red data book: rare and endangered plants. Science Press, Beijing

    Google Scholar 

  • Godt MJW, Caplow F, Hamrick JL (2005) Allozyme diversity in the federally threatened golden paintbrush, Castilleja levisecta (Scrophulariaceae). Conserv Genet 6:87–99

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm. Updated from Goudet (1995)

  • Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–325

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, MA, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans R Soc B 351:1291–1298

    Article  Google Scholar 

  • Hare MP (2001) Prospects for nuclear gene phylogeography. Trends Ecol Evol 16:700–706

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hurst CC (1941) Notes on the origin and evolution of our garden roses. J R Hortic Soc 66:242–250

    Google Scholar 

  • Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Senni KEI, Fujii N, Setoguchi H (2008) Consistent geographic structure among multiple nuclear sequences and cpDNA polymorphisms of Cardamine nipponica Franch. et Savat. (Brassicaceae). Mol Ecol 17:3178–3188

    Article  CAS  PubMed  Google Scholar 

  • Ji SC, Wang Q, Sun SS, Xu ZQ, Li HB (2008) Continental extrusion and seismicity in China. Acta Geol Sin 82:1643–1667 (in Chinese)

    Google Scholar 

  • Jian HY (2015) Genetic differentiation and spatial genetic structure of Rosa soulieana Crép. Dissertation, University of Chinese Academy of Sciences.

  • Jian HY, Zhang H, Zhang T, Li SF, Wang QG, Yan HJ, Qiu XQ, Tang KX (2010) Karyotype analysis of different varieties on Rosa odorata Sweet. J Plant Genet Resour 11:457–461 (in Chinese)

    Google Scholar 

  • Joichi A, Yomogida K, Awano K, Ueda Y (2005) Volatile components of tea-scented modern roses and ancient Chinese roses. Flavour Frag J 20:152–157

    Article  CAS  Google Scholar 

  • Joly S, Starr JR, Lewis WH, Bruneau A (2006) Polyploid and hybrid evolution in roses east of the Rocky Mountains. Am J Bot 93:412–425

  • Ku TC, Robertson KR (2003) Rosa. In: Wu ZY, Raven PH (eds) Flora of China, vol 9. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp 296–339

    Google Scholar 

  • Lennartsson T (2002) Extinction thresholds and disrupted plant-pollinator interactions in fragmented plant populations. Ecology 83:3060–3072

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Luan SS, Chiang TY, Gong X (2006) High genetic diversity vs. low genetic differentiation in Nouelia insignis (Asteraceae), a narrowly distributed and endemic species in China, revealed by ISSR fingerprinting. Ann Bot 98:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacPhail VJ, Kevan PG (2009) Review of the breeding systems of wild roses (Rosa spp.). Floriculture Ornamental Biotech 3:1–13

    Google Scholar 

  • Malhotra A, Dawson K, Guo P, Thorpe RS (2011) Phylogenetic structure and species boundaries in the mountain pitviper Ovophis monticola (Serpentes: Viperidae: Crotalinae) in Asia. Mol Phylogenet Evol 59:444–457

    Article  PubMed  Google Scholar 

  • Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mapelli F, Mora M, Mirol P, Kittlein M (2012) Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conserv Genet 13:165–181

    Article  Google Scholar 

  • Meng J, Fougère-Danezan M, Zhang LB, Li DZ, Yi TS (2011) Untangling the hybrid origin of the Chinese tea roses: evidence from DNA sequences of single-copy nuclear and chloroplast genes. Plant Syst Evol 297:157–170

    Article  CAS  Google Scholar 

  • Meng J, Li DZ, Yi TS, Yang JB, Zhao XF (2009) Development and characterization of microsatellite loci for Rosa odorata var. gigantea Rehder & E. H. Wilson (Rosaceae). Conserv Genet 10:1973–1976

    Article  CAS  Google Scholar 

  • Miller M (1997) Tools for population genetic analyses (TFPGA) 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. http://www.marksgeneticsoftware.net/

  • Mona S, Ray N, Arenas M, Excoffier L (2014) Genetic consequences of habitat fragmentation during a range expansion. Heredity 112:291–299

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Hunter D, Pietsch ROD, Osborne W, Keogh JS (2008) Assessment of genetic diversity in the critically endangered Australian corroboree frogs, Pseudophryne corroboree and Pseudophryne pengilleyi, identifies four evolutionarily significant units for conservation. Mol Ecol 17:3448–3463

    PubMed  Google Scholar 

  • Moritz C (1994) Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M, Tajima F (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105:207–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Olsen KM (2002) Population history of Manihot esculenta (Euphorbiaceae) inferred from nuclear DNA sequences. Mol Ecol 11:901–911

    Article  CAS  PubMed  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci U S A 96:5586–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyant LHS, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23

    Article  Google Scholar 

  • Pérusse JR, Schoen DJ (2004) Molecular evolution of the GapC gene family in Amsinckia spectabilis populations that differ in outcrossing rate. J Mol Evol 59:427–436

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potter KM, Hipkins VD, Mahalovich MF, Means RE (2015) Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): phylogeographic, taxonomic and conservation implications. Tree Genet Genomes 11:1–23

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu XQ, Tang KX, Jian HY, Wang QG, Li SF, Shao ZH, Zhang H (2011) SSR markers based genetic diversity of populations of Rosa odorata Sweet var. gigantea in Yunnan Province. J Huazhong Agric Univ 30:300–304 (in Chinese)

    CAS  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. Available from http://beast.bio.de.ac.uk/Tracer.

  • Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rowden A, Robertson A, Allnutt T, Heredia S, Williams-Linera G, Newton AC (2004) Conservation genetics of Mexican beech, Fagus grandifolia var. mexicana. Conserv Genet 5:475–484

    Article  CAS  Google Scholar 

  • Russell J, van Zonneveld M, Dawson IK, Booth A, Waugh R, Steffenson B (2014) Genetic diversity and ecological niche modelling of wild barley: refugia, large-scale post-LGM range expansion and limited mid-future climate threats? PloS one 9:e86021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Scalliet G, Piola F, Douady CJ, Rety S, Raymond O, Baudino S, Bordji K, Bendahmane M, Dumas C, Cock JM, Hugueney P (2008) Scent evolution in Chinese roses. Proc Natl Acad Sci U S A 105:5927–5932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Schaberg PG, DeHayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag 256:855–862

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Setoguchi H, Mitsui Y, Ikeda H, Nomura N, Tamura A (2011) Genetic structure of the critically endangered plant Tricyrtis ishiiana (Convallariaceae) in relict populations of Japan. Conserv Genet 12:491–501

    Article  Google Scholar 

  • Shao ZH (2010) Study on genetic diversity of Rosa odorata Sweet var. gigantea and R. longicuspis Bertol. Dissertation, Southwest University

  • Shih FL, Hwang SY, Cheng YP, Lee PF, Lin TP (2007) Uniform genetic diversity, low differentiation, and neutral evolution characterize contemporary refuge populations of Taiwan fir (Abies kawakamii, Pinaceae). Am J Bot 94:194–202

    Article  PubMed  Google Scholar 

  • Spinks PQ, Thomson RC, Bradley Shaffer H (2010) Nuclear gene phylogeography reveals the historical legacy of an ancient inland sea on lineages of the western pond turtle, Emys marmorata in California. Mol Ecol 19:542–556

    Article  PubMed  Google Scholar 

  • Spinks PQ, Thomson RC, Shaffer HB (2014) The advantages of going large: genome-wide SNPs clarify the complex population history and systematics of the threatened western pond turtle. Mol Ecol 23:2228–2241

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Taponnier P, Lacassin R, Leloup PH, Scharer U, Zhong D, Wu HW, Liu XH, Ji SC, Zhang LS, Zhong JY (1990) The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature 343:431–437

    Article  Google Scholar 

  • The National Environment Protection Agency, Institute of Botany CAS (1987) Directory of rare and endangered protected plants in China. Science Press, Beijing

    Google Scholar 

  • Tian B, Yang HQ, Wong KM, Liu AZ, Ruan ZY (2011) ISSR analysis shows low genetic diversity versus high genetic differentiation for giant bamboo, Dendrocalamus giganteus (Poaceae: Bambusoideae), in China populations. Genet Resour Crop Ev 59:901–908

  • Ueda Y, Akimoto S (2001) Cross- and self-compatibility in various species of the genus Rosa. J Hortic Sci Biotechnol 76:392–395

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • van Zonneveld M, Scheldeman X, Escribano P, Viruel MA, Van Damme P, Garcia W, Tapia C, Romero J, Sigueñas M, Hormaza JI (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PloS ONE 7:e29845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YL, Qin YY, Du Z, Yan GQ (2012) Genetic diversity and differentiation of the endangered tree Elaeagnus mollis Diels (Elaeagnus L.) as revealed by Simple Sequence Repeat (SSR) Markers. Biochem Syst Ecol 40:25–33

    Article  CAS  Google Scholar 

  • Wang ZF, Hamrick JL, Godt MJ (2004) High genetic diversity in Sarracenia leucophylla (Sarraceniaceae), a carnivorous wetland herb. J Hered 95:234–243

    Article  CAS  PubMed  Google Scholar 

  • Warren R, VanDerWal J, Price J, Welbergen J, Atkinson I, Ramirez-Villegas J, Osborn T, Jarvis A, Shoo L, Williams S (2013) Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Clim Change 3:678–682

    Article  Google Scholar 

  • Wee AKS, Takayama K, Chua JL, Asakawa T, Meenakshisundaram SH, Onrizal AB, Ardli ER, Sungkaew S, Malekal NB, Tung NX, Salmo SG, Yllano OB, Saleh MN, Soe KK, Tateishi Y, Watano Y, Baba S, Webb EL, Kajita T (2015) Genetic differentiation and phylogeography of partially sympatric species complex Rhizophora mucronata Lam. and R. stylosa Griff. using SSR markers. BMC Evol Biol 15:57. doi:10.1186/s12862-015-0331-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir BS (1996) Genetic Data Analysis II: methods for discrete population genetic data. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698

    Article  CAS  PubMed  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugenic 15:323–354

    Article  CAS  Google Scholar 

  • Wu FQ, Shen SK, Zhang XJ, Wang YH, Sun WB (2015) Genetic diversity and population structure of an extremely endangered species: the world’s largest Rhododendron. AoB Plants 7:plu082

    Article  Google Scholar 

  • Wylie AP (1954) The history of garden roses. JR Hortic Soc 79:555–571

    Google Scholar 

  • Yang ZY, Yi TS, Zeng LQ, Gong X (2014) The population genetic structure and diversification of Aristolochia delavayi (Aristolochiaceae), an endangered species of the dry hot valleys of the Jinsha River, southwestern China. Botany 92:579–587

    Article  Google Scholar 

  • Yao XH, Ye QG, Kang M, Huang HW (2007) Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytol 176:472–480

    Article  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

  • Young MA, Phillip S, Rich B (2007) Modern Roses 12: the comprehensive list of roses in cultivation or of historical or botanical importance. American Rose Society, Shreveport

    Google Scholar 

  • Zhang DX, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584

    Article  CAS  PubMed  Google Scholar 

  • Zhang LH, Byrne DH, Ballard RE, Rajapakse S (2006) Microsatellite marker development in rose and its application in tetraploid mapping. J Am Soc Hortic Sci 131:380–387

    Article  CAS  Google Scholar 

  • Zhao XF, Ma YP, Sun WB, Wen XY, Milne R (2012) High genetic diversity and low differentiation of Michelia coriacea (Magnoliaceae), a critically endangered endemic in southeast Yunnan, China. Int J Mol Sci 13:4396–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Vrieling K, Liao H, Xiao MQ, Zhu YQ, Rong J, Zhang WJ, Wang YG, Yang J, Chen JK, Song ZP (2013) Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild rice Oryza rufipogon? Mol Ecol 22:5531–5547

    Article  CAS  PubMed  Google Scholar 

  • Zhao YJ, Gong X (2012) Genetic structure of the endangered Leucomeris decora (Asteraceae) in China inferred from chloroplast and nuclear DNA markers. Conserv Genet 13:271–281

    Article  CAS  Google Scholar 

  • Zhou NN, Zhang H, Wang QG, Jian HY, Li SF, Qiu XQ, Xu F, Tang KX (2012) Genetic diversity analyses of Rosa omeiensis Rolfe population based on SSR markers. Jiangsu Agric Sci 40:33–36 (in Chinese)

    CAS  Google Scholar 

  • Zhou NN, Zhang H, Yang CM, Wang GX, Li SC, Shan QL, Tang KX (2011) Genetic diversity analyses of Rosa sericea Lindl. population based on SSR markers. Southwest China J Agric Sci 24:1899–1903 (in Chinese)

    Google Scholar 

  • Zhu Y, Wan QH, Yu B, Ge YF, Fang SG (2013) Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda. BMC Evol Biol 13:1–10

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jiang Wei and Yang Yang for sample collection and field assistance, and Yang Junbo, Wang Qun, and Zhao Xingfeng for their assistance on laboratory works, and Poudel C. Ram and Jiang Wei for revising our manuscript. This study was supported by grants from the National Key Basic Research Program of China (grant no. 2014CB954100), the Applied Fundamental Research Foundation of Yunnan Province (grant no. 2014GA003), the Talent Project of Yunnan Province (project no. 2011CI042), and the Scientific Research Fund Project of Yunnan Provincial Department of Education (project no. 2013Y465). This study was conducted in the Key Laboratory of the Southwest China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Shuang Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no commercial or financial relationships that could be construed as a potential conflict of interest.

Data Archiving Statement

The sequences of 14 GAPDH haplotypes have been deposited in GenBank (accession numbers from KF562844 to KF562857). All of the GAPDH aligned sequence set will be submitted to PopSet. Our microsatellite raw data for 424 Rosa odorata var. gigantea genotypes will be deposited in the Genome Database of Rosaceae (GDR) Database, and accession number will be provided once available.

Additional information

Communicated by V. Decroocq

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., He, SL., Li, DZ. et al. Nuclear genetic variation of Rosa odorata var. gigantea (Rosaceae): population structure and conservation implications. Tree Genetics & Genomes 12, 65 (2016). https://doi.org/10.1007/s11295-016-1024-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1024-9

Keywords

Navigation