Skip to main content
Log in

De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Mulberry (Morus atropurpurea) is an economically important tree with a long history of extensive cultivation in Asia because it is the exclusive food source for the silkworm (Bombyx mori). Recently, mulberry has gained additional commercial value as a source of medicinal compounds, as animal fodder, and for landscaping. In the present work, the mulberry transcriptome was sequenced using the Illumina paired-end sequencing technology. A total of 105 million 90-bp paired-end reads were generated, and 60,069 unigenes were assembled with an N50 of 1219 bp. Based on a sequence similarity search with known proteins, 40,121 genes were identified. Among these genes, 31,548 were annotated with 55 gene ontology functional categories, 7790 had a Cluster of Orthologous Groups classification, and 23,188 mapped to 128 biological pathways in the Kyoto Encyclopedia of Genes and Genomes pathway database. In addition, 10,268 microsatellites were developed and characterized as potential molecular markers. These data will accelerate the understanding of mulberry growth and development mechanisms and facilitate gene discovery and functional genomic studies in mulberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  CAS  PubMed  Google Scholar 

  • Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102

    Article  PubMed Central  PubMed  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bown D (1995) Encyclopedia of herbs and their uses. Dorling Kindersley, London, pp 313–314

    Google Scholar 

  • Burbulis IE, Shirley BW (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci 96:12929–12934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Checker VG, Saeed B, Khurana P (2012) Analysis of expressed sequence tags from mulberry (Morus indica) roots and implications for comparative transcriptomics and marker identification. Tree Genet Genomes 8:1437–1450

    Article  Google Scholar 

  • Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang CL, Hsieh YS (2006) Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett 235:248–259

    Article  CAS  PubMed  Google Scholar 

  • Clark MS, Thorne MA, Vieira FA, Cardoso JC, Power DM, Peck LS (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362

    Article  PubMed Central  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Biol 52:29–66

    Article  CAS  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goff S, Ricke D, Lan T, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Gulyani V, Khurana P (2011) Identification and expression profiling of drought-regulated genes in mulberry (Morus sp.) by suppression subtractive hybridization of susceptible and tolerant cultivars. Tree Genet Genomes 7:725–738

    Article  Google Scholar 

  • He NJ, Zhang C, Qi XW, Zhao SC, Tao Y, Yang GJ, Lee TH, Wang XY, Cai QL, Li D et al (2013) Draft genome sequence of the mulberry tree Morus notabilis. Nature Commun 4:2445

    Article  Google Scholar 

  • Hegedus Z, Zakrzewska A, Agoston VC, Ordas A, Racz P, Mink M, Spaink HP, Meijer AH (2009) Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol 46:2918–2930

    Article  CAS  PubMed  Google Scholar 

  • Initiative TAG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12:389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kent WJ (2002) BLAT-The BLAST-Like alignment tool. Genome Res 12:656–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitajima S, Taira T, Oda K, Yamato KT, Inukai Y, Hori Y (2012) Comparative study of gene expression and major proteins’ function of laticifers in lignified and unlignified organs of mulberry. Planta 235:589–601

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Ono H, Nakamura M, Tateishi K, Hirayama C, Tamura Y, Hattori M, Koyama A, Kohno K (2006) Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. Proc Natl Acad Sci 103:1337–1341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lal S, Ravi V, Khurana JP (2009) Repertoire of leaf expressed sequence tags (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica L.). Tree Genet Genomes 5:359–374

    Article  Google Scholar 

  • Li RQ, Zhu HM, Ruan J, Qian WB, Fang XD, Shi ZB, Li YR, Li ST, Shan G, Kristiansen K et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Huang X et al (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20:1238–1249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuoka T, Kimura T, Muraoka N (1994) Research of the available constituents from mulberry tree. Tohoku Agric Res (Japan) 47:361–362

    Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez MD (2002) Mulberry: an exceptional forage available almost worldwide. In: Sanchez MD (ed) FAO Electronic conference on mulberry for animal production (Morus-L). Rome, pp 271–290

  • Severin AJ, Woody JL, Bolon Y-T, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE et al (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed Central  PubMed  Google Scholar 

  • Soufleros EH, Mygdalia AS, Natskoulis P (2004) Characterization and safety evaluation of the traditional Greek fruit distillate “Mouro” by flavor compounds and mineral analysis. Food Chem 86:625–636

    Article  CAS  Google Scholar 

  • The Sericultural Research Institute of Chinese Academy of Agricultural Sciences (SRICAAS) (1993) Mulberry Cultivars in China. Agriculture Press, Beijing, pp 19–20, Chinese writing

    Google Scholar 

  • Tipton JL (1994) Relative drought resistance among selected southwestern landscape plants. J Arboric 20:150

    Google Scholar 

  • Torres TT, Metta M, Ottenwalder B, Schlotterer C (2008) Gene expression profiling by massively parallel sequencing. Genome Res 18:172–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS (2010a) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11:400

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010b) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11:726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu MD, Xiang ZH (1996) The discovery and study on a natural haploid Morus notabilis Schneid. Sci Sericult 22:67–71, Chinese writing

    CAS  Google Scholar 

  • Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152:1787–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Beijing Genomics Institute for assistance in raw data processing and related bioinformatics analysis. This work was supported by funds from the Natural Science Foundation of Guangdong Province, China (No. S2013040016490) and the President Foundation of Guangdong Academy of Agricultural Sciences, China (No. 201314).

Data archiving statement

The sequencing raw data from this study can be found in the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra) under accession number SRP026705. The assembly sequences data has been deposited at the NCBI Transcriptome Shotgun Assembly Sequence Database (TSA) (http://www.ncbi.nlm.nih.gov/genbank/tsa) under the accession GBZO00000000. The version described in this study is the first version, GBZO01000000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Luo.

Additional information

Communicated by J. L. Wegrzyn

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Transcriptome CDSs predicted by blastx and ESTScan. (A) Length distribution of CDSs predicted by blastx. (B) Length distribution of CDSs predicted by ESTScan. (DOC 100 kb)

Supplementary Table 1

Primer sequences for SSR markers. (XLS 40 kb)

Supplementary Table 2

Estimated full-length genes of assembled unigenes. (DOCX 16 kb)

Supplementary Table 3

Comparison of all unigenes against the mulberry genome sequence. (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Tang, C., Wang, Z. et al. De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Tree Genetics & Genomes 11, 26 (2015). https://doi.org/10.1007/s11295-015-0851-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0851-4

Keywords

Navigation