Skip to main content
Log in

Evolution of rDNA FISH patterns in the Fagaceae

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Fagaceae is one of the most important plant families in European forest ecosystems, and it includes several genera distributed in the Northern hemisphere. In this work we studied the genome organization and evolution within the family, by karyotyping and physically mapping rDNA in ten European and Asian species of the genera Fagus, Quercus, and Castanea. All of the species studied had a chromosome number of 2n=2x=24, except for the first report of a single individual of Quercus suber which proved to be triploid (2n=3x=36). The rDNA physical mapping revealed several patterns: the dominant one is present in European and Asian Quercus subgenus Quercus, and in Castanea sativa and Castanea crenata, consisting of two 18S–25S rDNA loci (one subterminal major and one pericentromeric minor) and one 5S rDNA pericentromeric locus. In Fagus sylvatica and in Quercus sessilifolia, different patterns were observed: four terminal 18S–25S rDNA loci and two 5S rDNA pericentromeric loci in the former, and five 18S–25S rDNA loci (three terminal and two intercalary) and one 5S rDNA pericentromeric locus in the latter. In Castanea mollissima a distinct rDNA distribution pattern with two intercalary 18S–25S rDNA loci and two 5S rDNA was found. These findings suggest rDNA loci restructuring during Castanea evolution, and variability of 18S–25S loci between Quercus and Cyclobalanopsis subgenera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  PubMed  CAS  Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops.1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306

    Article  PubMed  CAS  Google Scholar 

  • Barreneche T, Casasoli M, Russell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor Appl Genet 108:558–566

    Article  PubMed  CAS  Google Scholar 

  • Burda R, Shchepotiev F (1973) Spontaneous polyploidy in seedlings of multi-seeded acorns of Quercus robur L. Cytol Genet 7:140–143

    Google Scholar 

  • Butorina A (1993) Cytogenetic study of diploid and spontaneous triploid oaks, Quercus robur L. Ann Sci For 50:144–150

    Article  Google Scholar 

  • Cai Q, Zhang D, Liu Z-L, Wang X-R (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97:715–722

    Article  PubMed  CAS  Google Scholar 

  • Camus A (1936–54) Les chênes: Monographie du genre Quercus. In: Lechevalier. (ed) Les chênes: Monographie du genre Quercus, Paris

  • Casasoli M, Derory J, Morera-Dutrey C, Brendel O, Porth I, Guehl JM, Villani F, Kremer A (2006) Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533–546

    Article  PubMed  CAS  Google Scholar 

  • Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96

    Article  PubMed  CAS  Google Scholar 

  • Chalupa V (1986) Fagus sylvatica L. (European beech). In: BYPS (ed) Biotechnology in agriculture and forestry trees IV. Springer, pp 138–140

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Sun WB, Han CY, Coombes A (2007) Karyomorphology of the endangered Trigonobalanus doichangensis (A. Camus) Forman (Fagaceae) and its taxonomic and biogeographical implications. Bot J Linn Soc 154:321–330

    Article  Google Scholar 

  • Chokchaichamnankit P, Anamthawat-Jonsson K, Chulalaksananukul W (2008) Chromosomal mapping of 18S–25S and 5S ribosomal genes on 15 species of Fagaceae from Northern Thailand. Silvae Genet 57:5–13

    Google Scholar 

  • de Moraes AP, Soares WD, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosome Res 15:115–121

    Article  PubMed  CAS  Google Scholar 

  • Denk T (2003) Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Syst Evol 240:55–81

    Article  Google Scholar 

  • Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int J Plant Sci 170:926–940

    Article  Google Scholar 

  • Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366

    Google Scholar 

  • Denk T, Grimm GW, Hemleben V (2005) Patterns of molecular and morphological differentiation in Fagus (Fagaceae): phylogenetic implications. Am J Bot 92:1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry PartA 51A:127–128

    Google Scholar 

  • Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in-situ hybridization and fluorochrome banding. J Hered 86:289–296

    Google Scholar 

  • Dzialuk A, Chybicki I, Welc M, Soliwiniska E, Burczyk J (2007) Presence of triploids among oak species. Ann Bot 99:959–964

    Article  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Gerlach W, Bedbrook J (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865

    Article  PubMed  CAS  Google Scholar 

  • Grimm GW, Denk T (2008) ITS evolution in Platanus (Platanaceae): homoeologues, pseudogenes and ancient hybridization. Ann Bot 101:403–419

    Article  PubMed  CAS  Google Scholar 

  • Grimm GW, Denk T, Hemleben V (2007) Coding of intraspecific nucleotide polymorphisms: a tool to resolve reticulate evolutionary relationships in the ITS of beech trees (Fagus L., Fagaceae). Syst Biodivers 5:291–309

    Article  Google Scholar 

  • Hamon P, Siljak-Yakovlev S, Srisuwan S, Robin O, Poncet V, Hamon S, de Kochko A (2009) Physical mapping of rDNA and heterochromatin in chromosomes of 16 Coffea species: a revised view of species differentiation. Chromosome Res 17:291–304

    Article  PubMed  CAS  Google Scholar 

  • Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497

    Article  PubMed  Google Scholar 

  • Hou D (1971) Chromosome numbers of Trigonobalanus verticillata Forman (Fagaceae). Acta Bot Neerl 20:543–549

    Google Scholar 

  • Jaynes RA (1962) Chesnut chromosomes. For Sci 8:372–377

    Google Scholar 

  • Johnson GP (1988) Revision of Castanea sect. Balanocastanon (Fagaceae). J Arnold Arbor 69:25–49

    Google Scholar 

  • Lang P, Dane F, Kubisiak TL (2006) Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data. Tree Genet Genomes 2:132–139

    Article  Google Scholar 

  • Lang P, Dane F, Kubisiak TL, Huang H (2007) Molecular evidence for an Asian origin and a unique westward migration of species in the genus Castanea via Europe to North America. Mol Phylogenet Evol 43:49–59

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of 4 sites of 5S rDNA sequences and one-site of the alpha-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517–523

    Article  PubMed  CAS  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Li D, Zhang X (2002) Physical localization of the 18S-5.8S-26S rDNA and sequence analysis of ITS regions in Thinopyrum ponticum (Poaceae: Triticeae): implications for concerted evolution. Ann Bot 90:445–452

    Article  PubMed  CAS  Google Scholar 

  • Li RQ, Chen ZD, Lu AM, Soltis DE, Soltis PS, Manos PS (2004) Phylogenetic relationships in Fagales based on DNA sequences from three genomes. Int J Plant Sci 165:311–324

    Article  CAS  Google Scholar 

  • Liu ZL, Zhang D, Hong DY, Wang XR (2003) Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theor Appl Genet 106:198–204

    PubMed  CAS  Google Scholar 

  • Loureiro J, Pinto G, Lopes T, Dolezel J, Santos C (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J, Rodriguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  PubMed  CAS  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103:5224–5229

    Article  PubMed  CAS  Google Scholar 

  • Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2010) Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291–317

    Article  PubMed  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781

    Article  PubMed  CAS  Google Scholar 

  • Manos PS, Steele KP (1997) Phylogenetic analyses of “higher” Hamamelididae based on plastid sequence data. Am J Bot 84:1407–1419

    Article  PubMed  CAS  Google Scholar 

  • Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379

    Article  Google Scholar 

  • Manos PS, Cannon CH, Oh S-H (2008) Phylogenetic relationships and taxonomic status of the paleoendemic Fagaceae of western North America: recognition of a new genus Notholithocarpus. Madroño 55:181–190

    Article  Google Scholar 

  • Mendes A, Graça J (2009) Cork oak trees and woodlands: cork bottle stoppers and other cork products. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge ecology, adaptive management, and restoration. Island Press, Washington, pp 55–69

    Google Scholar 

  • Mir C, Toumi L, Jarne P, Sarda V, Di Giusto F, Lumaret R (2006) Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q. suber L. and Q. canariensis Willd.): evidence from nuclear and cytoplasmic markers. Heredity 96:175–184

    Article  PubMed  CAS  Google Scholar 

  • Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci Forest 50:25S–34S

    Article  Google Scholar 

  • Nixon KC (1997) Quercus. In: Press OU (ed) Flora of North America North of Mexico, New York, pp 445–506

  • Oh S, Manos P (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57:434–451

    Google Scholar 

  • Ohri D, Ahuja MR (1991) Giemsa C-banding in Fagus sylvatica L., Betula pendula Roth and Populus tremula L. Silvae Genet 40:72–74

    Google Scholar 

  • Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  CAS  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci U S A 101:18240–18245

    Article  PubMed  CAS  Google Scholar 

  • Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59

    CAS  Google Scholar 

  • Ricroch A, Peffley EB, Baker RJ (1992) Chromosomal location of rDNA in Allium—in situ hybridization using biotin-labeled and fluorescein-labeled probe. Theor Appl Genet 83:413–418

    Article  Google Scholar 

  • Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115

    Article  PubMed  CAS  Google Scholar 

  • Sheng MY, Wang LJ (2010) Chromosomal localization of 45S and 5S rDNA in 14 species and the implications for genome evolution of genus Epimedium. Plant Syst Evol 290:65–73

    Article  Google Scholar 

  • Singh G (2010) Plant systematics: an integrated approach, 3rd edn. Science Publishers US

  • Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85–95

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Am J Bot 86:735

    Article  PubMed  CAS  Google Scholar 

  • Zoldos V, Papes D, Brown SC, Panaud O, Siljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41:162–168

    CAS  Google Scholar 

  • Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Hachemi Merouani, Dr. Atshuchi Sakai, Prof. Carlos Abreu, Engr. Isabel Silvestre, Engr. Carla Faria, and Bruno Larsen for generously providing help in obtaining and preserving the plant material. We thank Prof. Wanda Viegas for many helpful comments. We are also very grateful to Prof. Neil Jones for his critical revision of the manuscript and editing of English. T.R was supported by Fundação Ciência e Tecnologia, Portugal (Grant SFRH/BD/13319/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Ribeiro.

Additional information

Communicated by A. Kremer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, T., Loureiro, J., Santos, C. et al. Evolution of rDNA FISH patterns in the Fagaceae. Tree Genetics & Genomes 7, 1113–1122 (2011). https://doi.org/10.1007/s11295-011-0399-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0399-x

Keywords

Navigation