Skip to main content
Log in

Biodiversity of arbuscular mycorrhizal fungi in the drawdown zone of the Three Gorges Reservoir under different fertilization histories

  • Original Article
  • Published:
Ecological Research

Abstract

Impoundment of the Three Gorges Reservoir (TGR) has dramatically influenced the riparian environment and shaped a new drawdown zone, which has experienced long-term winter conditions and short periods of summer flooding. The community structure and diversity of arbuscular mycorrhizal (AM) fungi (AMF) were investigated in three areas with different fertilization histories [Area A (5 years of fertilization), Area B (3 years of fertilization) and Area C (no fertilization)] in the drawdown zone of the TGR. Altogether, 50 AMF species were identified; the genera Acaulospora, Funneliformis and Glomus were predominant. The AM fungal community differed among areas A, B and C. A higher isolation frequency and relative abundance of Acaulospora, Ambispora, Entrophospora and Paraglomus were observed in areas A and B; however, Claroideoglomus, Diversispora, Sclerocystis and Septoglomus were more abundant in Area C. The highest spore density occurred in Area C, and was slightly lower in Area A and lowest in Area B. Conversely, species richness and diversity indices (Shannon–Wiener and evenness indices) were the highest in Area A, followed by areas C and B. Based on nonmetric multidimensional scaling analyses, the distribution of AMF was influenced by plant host, fertilization practice and environmental factors. Among them, the soil physicochemical properties were the main drivers affecting AMF, in which three edaphic attributes (carbon/nitrogen ratio, available phosphorus and potassium content) were significantly correlated (P < 0.001) with the AM fungal community composition in the three areas of the drawdown zone of the TGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alguacil MM, Torrecillas E, García-Orenes F, Roldán A (2014) Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol Biochem 76:34–44

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98:745–753

    Article  Google Scholar 

  • Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218:137–144

    Article  CAS  Google Scholar 

  • Brundrett M, Melville L, Peterson L (1994) Practical methods in mycorrhizal research. Mycologue, Waterloo

    Google Scholar 

  • Caravaca F, Barea JM, Palenzuela J, Figueroa D, Alguacil MM, Roldán A (2003) Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Appl Soil Ecol 22:103–111

    Article  Google Scholar 

  • Carvalho F, de Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19

    Article  Google Scholar 

  • Dai M, Hamel C, St Arnaud M, He Y, Grant C, Lupwayi N, Janzen H, Malhi SS, Yang X, Zhou Z (2012) Arbuscular mycorrhizal fungi assemblages in Chernozem great groups revealed by massively parallel pyrosequencing. Can J Microbiol 58:81–92

    Article  CAS  PubMed  Google Scholar 

  • Daniell TJ, Hodge A, Young JPW, Fitter A (1999) How many fungi does it take to change a plant community? Trends Plant Sci 4:81–82

    Article  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Gong J (2014) Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24:79–94

    Article  PubMed  Google Scholar 

  • Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KM (1997) Moisture and substrate stability determine VA mycorrhizal fungal community distribution and structure in an arid grassland. J Arid Environ 35:59–75

    Article  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Ji B, Bentivenga SP, Casper BB (2012) Comparisons of AM fungal spore communities with the same hosts but different soil chemistries over local and geographic scales. Oecologia 168:187–197

    Article  PubMed  Google Scholar 

  • Jiao H, Chen Y, Lin X, Liu R (2011) Diversity of arbuscular mycorrhizal fungi in greenhouse soils continuously planted to watermelon in North China. Mycorrhiza 21:681–688

    Article  PubMed  Google Scholar 

  • Johnson NC, Angelard C, Sanders IR, Kiers TE (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153

    Article  PubMed  Google Scholar 

  • Kennedy TA, Naeem S, Howe KM, Knops JM, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  CAS  PubMed  Google Scholar 

  • Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newsl 34:59

    Google Scholar 

  • Landis FC, Gargas A, Givnish TJ (2004) Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytol 164:493–504

    Article  Google Scholar 

  • Lei S, Zeng B, Yuan Z, Su X (2014) Changes in carbohydrate content and membrane stability of two ecotypes of Calamagrostis arundinacea growing at different elevations in the drawdown zone of the Three Gorges Reservoir. PLoS ONE 9:e91394

    Article  PubMed  PubMed Central  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    Article  Google Scholar 

  • Li T, Li JP, Zhao ZW (2004) Arbuscular mycorrhizas in a valley-type savanna in southwest China. Mycorrhiza 14:323–327

    Article  Google Scholar 

  • Li LF, Li T, Zhao ZW (2007) Differences of arbuscular mycorrhizal fungal diversity and community between a cultivated land, an old field, and a never-cultivated field in a hot and arid ecosystem of southwest China. Mycorrhiza 17:655–665

    Article  CAS  PubMed  Google Scholar 

  • Li LF, Li T, Zhang Y, Zhao ZW (2010) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427

    Article  CAS  PubMed  Google Scholar 

  • Likar M, Hančević K, Radić T, Regvar M (2013) Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza 23:209–219

    Article  CAS  PubMed  Google Scholar 

  • Luo FL, Wang L, Zeng B, Ye XQ, Chen T, Liu D, Zhang YH, Kuhn Arnd (2006) Photosynthetic responses of the riparian plant Arundinella anomala Steud. In Three Gorges Reservoir Region as affected by simulated flooding. Acta Ecol Sin 26:3602–3609 (in Chinese)

    Article  CAS  Google Scholar 

  • Maia SMF, Xavier FAS, Oliveira TS, Mendonça ES, Araújo Filho JA (2006) The impact of agroforestry and conventional systems on the soil quality from Cearense semi-arid region. Rev Árvore 30:837–848

    Article  Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    Article  CAS  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Miller SP (2000) Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Article  Google Scholar 

  • Morton JB (1988) Taxonomy of mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32:267–324

    Google Scholar 

  • Morton JB (1993) Problems and solutions for integration of glomalean taxonomy, systematic biology, and the study of endomycorrhizal phenomena. Mycorrhiza 2:97–109

    Article  Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaesporaceae and Paraglomaceae, with two new genera Archaespora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195

    Article  Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • New T, Xie Z (2008) Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam. Biodivers Conserv 17:3149–3163

    Article  Google Scholar 

  • Nielsen KB, Kjøller R, Olsson PA, Schweiger PF, Andersen FO, Rosendahl S (2004) Colonisation and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmana in southern Sweden. Mycol Res 108:616–625

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Oehl F, Da Silva GA, Goto BT, Sieverding E (2011) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116:75–120

    Article  Google Scholar 

  • Oksanen J (2011) Multivariate Analysis of Ecological Communities in R: Vegan Tutorial. http://cc.oulu.fi/∼jarioksa/opetus/metodi/vegantutor.pdf

  • Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara B, Simpson G, Solymos P, Stevens M, Wagner H (2012) vegan: Community Ecology Package R Package Version 2.0-4. P 190 http://cran.r-project.org/http://vegan.r-forge.r-project.org/

  • Pagano MC, Zandavalli RB, Araújo FS (2013) Biodiversity of arbuscular mycorrhizas in three vegetational types from the semiarid of Ceará State, Brazil. Appl Soil Ecol 67:37–46

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 66:1255–1259

    Google Scholar 

  • Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2007) Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296:65–75

    Article  CAS  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Agron, Soil Sci Soc AM, Madison, Wisconsin, pp 403–430

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457

    Article  PubMed  Google Scholar 

  • Saravesi K, Ruotsalainen AL, Cahill JF (2014) Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa. Mycorrhiza 24:239–245

    Article  CAS  PubMed  Google Scholar 

  • Schmid T, Meyer J, Oehl F (2008) Integration of mycorrhizal inoculum in high alpine revegetation. In: Feldmann F, Kapulnik Y, Baar J (Eds.) Mycorrhiza Works. Proceedings of the International Symposium‘Mycorrhiza for Plant Vitality’ and the Joint Meeting of Working Groups 1-4 of COST Action 870. Deutsche Phytomedizinische Gesellschaft, Braunschweig, Germany, pp 278–288

  • Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Arthur Schüßler and Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Printed copy available under ISBN-13: 978-1466388048, ISBN-10: 1466388048. Available at http://www.amf-phylogeny.com

  • Shafroth PB, Stromberg JC, Patten DT (2002) Riparian vegetation response to altered disturbance and stress regimes. Ecol Appl 12:107–123

    Article  Google Scholar 

  • Shi Z, Zhang L, Li X, Feng G, Tian C, Christie P (2007) Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals in plant communities of Junggar Basin, northwest China. Appl Soil Ecol 35:10–20

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego, pp 11–145

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Soteras F, Grilli G, Cofré MN, Marro N, Becerra A (2014) Arbuscular mycorrhizal fungal composition in high montane forests with different disturbance histories in central Argentina. Appl Soil Ecol 85:30–37

    Article  Google Scholar 

  • Šraj-Kržič N, Pongrac P, Klemenc M, Kladnik A, Regvar M, Gaberščik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:331–336

    Article  Google Scholar 

  • Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22:247–258

    Article  PubMed  Google Scholar 

  • Tenten N, Zeng B, Kazda M (2010) Soil stabilizing capability of three plant species growing on the Three Gorges Reservoir riverside. J Earth Sci 21:888–896

    Article  Google Scholar 

  • Thonar C, Schnepf A, Frossard E, Roose T, Jansa J (2011) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339:231–245

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • Vivas A, Vörös I, Biró B, Campos E, Barea JM, Azcón R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillu ssp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    Article  CAS  PubMed  Google Scholar 

  • Walker C, Mize W, McNabb HS (1982) Populations of endogonaceous fungi at two populations in central lowa. Can J Bot 60:2518–2529

    Article  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Vestberg M, Walker C, Hurme T, Zhang X, Lindström K (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18:59–68

    Article  PubMed  Google Scholar 

  • Wang Y, Qiu Q, Yang Z, Hu Z, Tam N, Xin G (2010) Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil 331:181–191

    Article  CAS  Google Scholar 

  • Wang Y, Huang Y, Qiu Q, Xin G, Yang Z, Shi S (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS ONE 6:e24512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Yuan X, Willison JH, Zhang Y, Liu H (2014) Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China’s three gorges reservoir. PLoS ONE 9:e100889

    Article  PubMed  PubMed Central  Google Scholar 

  • Wantzen KM, Rothhaupt KO, Mörtl M, Cantonati M, László G, Fischer P (2008) Ecological effects of water-level fluctuations in lakes. Hydrobiologia 613:1–4

    Article  Google Scholar 

  • Wetzel PR, van der Valk AG (1996) Vesicular–arbuscular mycorrhizae in prairie pothole wetland vegetation in Iowa and North Dakota. Can J Bot 74:883–890

    Article  Google Scholar 

  • Wetzel K, Silva G, Matczinski U, Oehl F, Fester T (2014) Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol Biochem 72:88–96

    Article  CAS  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    Article  PubMed  Google Scholar 

  • Willison JM, Li R, Yuan X (2013) Conservation and ecofriendly utilization of wetlands associated with the Three Gorges Reservoir. Environ Sci Pollut Res 20:6907–6916

    Article  Google Scholar 

  • Wirsel SGR (2004) Homogeneous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Srivastava AK, Zou YN (2013) AMF-induced tolerance to drought stress in citrus. Sci Hortic 164:77–87

    Article  CAS  Google Scholar 

  • Yang L, Deng HP, Han M, Lei SY (2008) Seed characteristics of Distylium chinense (Fr.) Diels the Three Gorges Reservoir Region. J Southwest Univ 30:79–84 (in Chinese)

    Google Scholar 

  • Ye C, Cheng X, Zhang Y, Wang Z, Zhang Q (2012) Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir, China. Ecol Eng 38:37–44

    Article  Google Scholar 

  • Ye C, Zhang K, Deng Q, Zhang Q (2013) Plant communities in relation to flooding and soil characteristics in the water level fluctuation zone of the Three Gorges Reservoir, China. Environ Sci Pollut Res 20:1794–1802

    Article  Google Scholar 

  • Zangaro W, Moreira M (2010) Micorrizas arbusculares nos biomas Floresta Atlântica e Floresta de Araucária. In: Siqueira JO, de Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas 30 anos de pesquisa no Brasil. UFLA, Lavras, pp 279–310

    Google Scholar 

  • Zhang Y, Guo LD, Liu RJ (2004) Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil 261:257–263

    Article  CAS  Google Scholar 

  • Zhao DD, Zhao ZW (2007) Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Appl Soil Ecol 37:118–128

    Article  Google Scholar 

  • Zhao CM, Chen WL, Huang HD, Tian ZQ, Chen Y, Xie ZQ (2007) Spatial pattern of plant species diversity in the inundation and resettlement region of the Three Gorges Reservoir. Biodivers Sci 15:510–522 (in Chinese)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank anonymous referees for constructive comments and suggestions that improved the manuscript. We are very grateful to anonymous AMF taxonomists for their help with the morphological identification of spores of AMF. The Natural Science Foundation of Chongqing (Grant No. cstc2012jjA20012), the National Natural Science Foundation of China (Grant No. 31270091) and the Scientific Research Foundation of Southwest University to Dr. Jinyan Dong (Grant No. swu109046) supported this work financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyan Dong.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16534 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Su, X., Cui, J. et al. Biodiversity of arbuscular mycorrhizal fungi in the drawdown zone of the Three Gorges Reservoir under different fertilization histories. Ecol Res 31, 407–416 (2016). https://doi.org/10.1007/s11284-016-1356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1356-9

Keywords

Navigation