Skip to main content
Log in

Evaluation of global warming impacts on the carbon budget of terrestrial ecosystems in monsoon Asia: a multi-model analysis

  • Original Article
  • Published:
Ecological Research

Abstract

This study assesses the potential impacts of future global warming on the carbon budget of terrestrial ecosystems across monsoon Asia using the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) dataset. We used simulation results of two emission pathways (RCP2.6 and RCP8.5), climate projections of five climate models, and seven terrestrial biome models to analyze the changes in net primary production and carbon stocks in the South, Southeast, and East Asian subregions during the period 1981–2099. The simulations indicated that by the end of the 21st century, net primary production would increase by 9–45 % and ecosystem carbon storage would increase by 42–86 Pg C. The clearest climatic impacts were found when using the adaptation-oriented emission scenario (RCP8.5), which assumes a greater CO2 increase and a larger change in climatic conditions. Substantial disparities in temporal trajectories and spatial patterns were found in the estimated changes, owing to the uncertainties in the emission scenarios, climate projections, and ecosystem models. We attempted to derive consistent patterns throughout the simulations to specify potential hotspots of climatic impacts (e.g., soil carbon change in the southern Tibetan Plateau). Finally, we discuss changes to the climatic characteristics in the study region (e.g., a change in the rainy season), the implications for ecosystem services, and the need for collaborative field monitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ailikun B, Yasunari T (2001) ENSO and Asian summer monsoon: persistence and transitivity in the seasonal march. J Meteor Soc Jpn 79:145–159

    Article  Google Scholar 

  • Annamalai H, Hafner J, Sooraj KP, Pillai P (2013) Global warming shifts the monsoon circulation, drying South Asia. J Clim 26:2701–2718. doi:10.1175/JCLI-D-12-00208.1

    Article  Google Scholar 

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:679–706. doi:10.1111/j.1365-2486.2006.01305.x

    Article  Google Scholar 

  • Boose ER, Foster DR, Fluet M (1994) Hurricane impacts to tropical and temperate forest landscapes. Ecol Monogr 64:369–400

    Article  Google Scholar 

  • Cai W, Santoso A, Wang G, Weller E, Wu L, Ashok K, Masumoto Y, Yamagata T (2014) Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510:254–258. doi:10.1038/nature13327

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 126:447–460. doi:10.1007/s10265-013-0565-3

    Article  PubMed  Google Scholar 

  • Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Huntingford C, Cox PM (2011) The Joint UK Land Environment Simulator (JULES), model description—part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 4:701–722. doi:10.5194/gmd-4-701-2011

    Article  Google Scholar 

  • Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156

    Article  Google Scholar 

  • Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008) Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in northern Japan. Trees 22:437–447. doi:10.1007/s00468-007-0204-5

    Article  CAS  Google Scholar 

  • Esser G (1995) Contribution of Monsoon Asia to the carbon budget of the biosphere, past and future. Vegetatio 121:175–188

    Article  Google Scholar 

  • Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  CAS  PubMed  Google Scholar 

  • Friend AD, White A (2000) Evaluation and analysis of a dynamic terrestrial ecosystem model under preindustrial conditions at the global scale. Glob Biogeochem Cycles 14:1173–1190

    Article  CAS  Google Scholar 

  • Friend AD, Lucht W, Rademacher TT, Keribin RM, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon P, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, Ostberg S, Pavlick R, Peylin P, Schaphoff S, Vuichard N, Warszwski L, Wiltshire A, Woodward FI (2014) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Nat Acad Sci 111:3280–3285. doi:10.1073/pnas.1222477110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C (2003) Potential impacts of human-induced land cover change on East Asia monsoon. Global Plan Change 37:219–229. doi:10.1016/S0921-8181(02)00207-2

    Google Scholar 

  • Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction—the ISI-MIP approach. Earth Sys Dyn 4:219–236. doi:10.5194/esd-4-219-2013

    Article  Google Scholar 

  • Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H (2008) Spatial distribution of carbon balance in forest ecosystem across East Asia. Agric For Meteorol 148:761–775. doi:10.1016/j.agrformet.2007.11.016

    Article  Google Scholar 

  • Hsu P-C, Li T, Luo J-J, Murakami H, Kitoh A, Zhao M (2012) Increase of global monsoon area and precipitation under global warming: a robust signal? Geophys Res Lett 39:L06701. doi:10.1029/2012GL051037

    Google Scholar 

  • Ichii K, Kondo M, Okabe Y, Ueyama M, Kobayashi H, Lee S-J, Saigusa N, Zhu Z, Myneni R (2013a) Recent changes in terrestrial gross primary productivity in Asia from 1982 to 2011. Remote Sens 5:6043–6062. doi:10.3390/rs5116043

    Article  Google Scholar 

  • Ichii K, Kondo M, Lee Y-H, Wang S-Q, Kim J, Ueyama M, Lim H-J, Shi H, Suzuki T, Ito A, Ju W, Huang M, Sasai T, Asanuma J, Han S, Hirano T, Hirata R, Kato T, Kwon H, Li S-G, Li Y-N, Maeda T, Miyata A, Matsuura Y, Murayama S, Nakai Y, Ohta T, Saitoh TM, Saigusa N, Takagi K, Tang Y-H, Wang H-M, Yu G-R, Zhang Y-P, Zaho F-H (2013b) Site-level model-data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation network: toward future modeling efforts. J For Res 18:13–20. doi:10.1007/s10310-012-0367-9

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Ito A (2011) A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Glob Change Biol 17:3161–3175. doi:10.1111/j.1365-2486.2011.02450.x

    Article  Google Scholar 

  • Ito A (2012) Detection and attribution of global change impact on a tower-observed ecosystem carbon budget: a critical appraisal. Environ Res Lett 7:1–6. doi:10.1088/1748-9326/7/1/014013

    Article  Google Scholar 

  • Ito A, Inatomi M (2012) Water-use efficiency of the terrestrial biosphere: a model analysis on interactions between the global carbon and water cycles. J Hydrometeorol 13:681–694. doi:10.1175/JHM-D-10-05034.1

    Article  Google Scholar 

  • Ito A, Oikawa T (2000) The large carbon emission from terrestrial ecosystems in 1998: a model simulation. J Meteor Soc Jpn 78:103–110

    Google Scholar 

  • Ito A, Saitoh TM, Sasai T (2015) Synergies between observational and modeling studies at the Takayama site: towards a better understanding of processes in terrestrial ecosystems. Ecol Res 30:201–210. doi:10.1007/s11284-014-1205-7

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Jung M, Henkel K, Herold M, Churkina G (2006) Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens Environ 101:534–553

    Article  Google Scholar 

  • Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems; evidence from eddy covariance data. Glob Change Biol 14:2333–2348. doi:10.1111/j.1365-2486.2008.01646.x

    Article  Google Scholar 

  • Kira T (1991) Forest ecosystems of East and Southeast Asia in a global perspective. Ecol Res 6:185–200

    Article  Google Scholar 

  • Kitoh A, Endo H, Kumar KK, Cavalcanti IFA, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res 118:3053–3065. doi:10.1002/jgrd.50258

    Google Scholar 

  • Koh LP, Miettinen J, Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Nat Acad Sci 108:5127–5132. doi:10.1073/pnas.1018776108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohyama T (2005) Scaling up from shifting-gap mosaic to geographic distribution in the modeling of forest dynamics. Ecol Res 20:305–312

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:GB1015. doi:10.1029/2003GB002199

  • Kumagai T, Porporato A (2012) Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? Plant Cell Environ 35:61–71. doi:10.1111/j.1365-3040.2011.02428.x

    Article  PubMed  Google Scholar 

  • Kwon H, Kim J, Hong J, Lim J-H (2010) Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea. Biogeosciences 7:1493–1504. doi:10.5194/bg-7-1493-2010

    Article  CAS  Google Scholar 

  • Latif M, Keenlyside NS (2009) El Niño/Southern Oscillation response to global warming. Proc Nat Acad Sci 106:20578–20583. doi:10.1073/pnas.0710860105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mizoguchi Y, Miyata A, Ohtani Y, Hirata R, Yuta S (2009) A review of tower flux observation sites in Asia. J For Res 14:1–9. doi:10.1007/s10310-008-0101-9

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fanseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nasahara KN, Nagai S (2015) Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). Ecol Res 30:211–223. doi:10.1007/s11284-014-1239-x

    Article  Google Scholar 

  • Nishina K, Ito A, Beerling DJ, Cadule P, Ciais P, Clark DB, Falloon P, Friend AD, Kahana R, Kato E, Keribin R, Lucht W, Lomas M, Rademacher TT, Pavlick R, Schaphoff S, Vuichard N, Warszwaski L, Yokohata T (2014) Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation. Earth Syst Dyn 5:197–209. doi:10.5194/esd-5-197-2014

    Article  Google Scholar 

  • Nishina K, Ito A, Falloon P, Friend AD, Beerling DJ, Ciais P, Clark DB, Kahana R, Kato E, Lucht W, Lomas M, Pavlick R, Schaphoff S, Warszawski L, Yokohata T (2015) Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenario, climate projection, and ecosystem simulation using the ISI-MIP result. Earth Syst Dyn 6:435–445. doi:10.5194/esd-6-435-2015

    Article  Google Scholar 

  • Ohsawa M (1995) Latitudinal comparison of altitudinal changes in forest structure, leaf-type, and species richness in humid monsoon Asia. Vegetatio 121:3–10

    Article  Google Scholar 

  • Oikawa T, Ito A (2001) Modeling carbon dynamics of terrestrial ecosystems in Monsoon Asia. In: Matsuno T, Kida H (eds) Present and future of modeling global environmental change: towards integrated modeling. TERRAPUB, Tokyo, pp 207–219

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi:10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  • Pavlick R, Drewry DT, Bohn K, Reu B, Kleidon A (2013) The Jena Diversity—Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences 10:4137–4177. doi:10.5194/bg-10-4137-2013

    Article  Google Scholar 

  • Peduzzi P, Chatenoux B, Dao H, de Bono A, Herold C, Kossin J, Mouton F, Nordbeck O (2012) Global trends in tropical cyclone risk. Nat Clim Change 2:289–294. doi:10.1038/NCLIMATE1410

    Article  Google Scholar 

  • Piao S, Ito A, Li SG, Huang Y, Ciais P, Wang XH, Peng SS, Nan HJ, Zhao C, Ahlström A, Andres RJ, Chevallier F, Fang JY, Hartmann J, Huntingford C, Jeong S, Levis S, Levy PE, Li JS, Lomas MR, Mao JF, Mohammat A, Muraoka H, Peng CH, Peylin P, Poulter B, Shen ZH, Shi X, Sitch S, Tao S, Tian HQ, Wu XP, Xu M, Yu GR, Viovy N, Zaehle S, Zeng N, Zhu B (2012) The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences 9:3571–3586. doi:10.5194/bg-9-3571-2012

    Article  CAS  Google Scholar 

  • Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N, Huntingford C, Jung M, Levis S, Levy PE, Li J, Lin X, Lomas MR, Lu M, Luo Y, Ma Y, Myneni RB, Poulter B, Sun Z, Wang T, Viovy N, Zaehle S, Zeng N (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol 19:2117–2132. doi:10.1111/gcb.12187

    Article  Google Scholar 

  • Poulter B, Pederson N, Liu H, Zhu Z, D’Arrigo R, Ciais P, Davi N, Frank D, Leland C, Myneni R, Piao S, Wang T (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178(179):31–45. doi:10.1016/j.agrformet.2012.12.006

    Article  Google Scholar 

  • Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature 500:287–295. doi:10.1038/nature12350

    Article  CAS  PubMed  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional precipitation patterns associated with the El Nino/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Nat Acad Sci 108:9899–9904. doi:10.1073/pnas.1019576108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saigusa N, Ichii K, Murakami H, Hirata R, Asanuma J, Den H, Han S-J, Ide R, Li S-G, Ohta T, Sasai T, Wang S-Q, Yu G-R (2010) Impact of meteorological anomalies in the 2003 summer of Gross Primary Productivity in East Asia. Biogeosci 7:641–655

    Article  Google Scholar 

  • Saji HN, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    CAS  PubMed  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Sodhi NS, Posa MRC, Lee TM, Bickford D, Koh LP, Brook BW (2010) The state and conservation of Southeast Asian biodiversity. Biodiv Conserv 19:317–328. doi:10.1007/s10531-009-9607-5

    Article  Google Scholar 

  • Takata K, Saito K, Yasunari T (2009) Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proc Nat Acad Sci 106:9586–9589. doi:10.1073/pnas.0807346106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka HL, Ishizaki N, Nohara D (2005) Intercomparison of the intensities and trends of Hadley, Walter and Monsoon circulations in the global warming projections. SOLA 1:77–80. doi:10.2151/sola.2005-2021

    Article  Google Scholar 

  • Tao B, Tian H, Chen G, Ren W, Lu C, Alley KD, Xu X, Liu M, Pan S, Virji H (2013) Terrestrial carbon balance in tropical Asia: contribution from cropland expansion and land management. Glob Plan Change 100:85–98. doi:10.1016/j.gloplacha.2012.09.006

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tian H, Melillo JM, Kicklighter DW, Pan S, Liu J, McGuire AD, Moore BI (2003) Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Glob Plan Change 37:201–217

    Google Scholar 

  • Tian H, Lu C, Yang J, Banger K, Huntzinger DN, Schwalm CR, Schwalm CR, Michalak AM, Cook R, Ciais P, Hayes D, Huang M, Ito A, Jain A, Lei H, Mao J, Pan S, Post WM, Peng S, Poulter B, Ren W, Ricciuto D, Schaefer K, Shi X, Tao B, Wang W, Wei Y, Yang Q, Zhang B, Zeng N (2015) Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Glob Biogeochem Cycles 29. doi:10.1002/2014GB005021

    Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roecker E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697

    Article  CAS  Google Scholar 

  • Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013) Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10:1717–1736. doi:10.5194/bg-10-1717-2013

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595. doi:10.1038/NCLIMATE1495

    Article  Google Scholar 

  • Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework. Proc Natl Acad Sci 111:3228–3232. doi:10.1073/pnas.1312330110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster PJ, Maganã VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  CAS  PubMed  Google Scholar 

  • Werth D, Avissar R (2005) The local and global effects of Southeast Asian deforestation. Geophys Res Lett 32:L20702. doi:10.1029/2005GL022970

    Article  Google Scholar 

  • Woodward FI, Lomas MR (2004) Vegetation dynamics—simulating responses to climatic change. Biol Rev 79:643–670. doi:10.1017/S1464793103006419

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Hong Y, Hong B (2012) Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch. Clim Dyn 39:2079–2088. doi:10.1007/s00382-012-1378-0

    Article  Google Scholar 

  • Yamada Y, Oouchi K, Satoh M, Tomita H, Yanase W (2010) Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: global cloud-system-resolving approach. Geophys Res Lett 37:L07709. doi:10.1029/2010GL042518

    Article  Google Scholar 

  • Yasunari T, Niles D, Taniguchi M, Chen D (2013) Asia: proving ground for global sustainability. Curr Opin Environ Sustain 5:288–292. doi:10.1016/j.cosust.2013.08.002

    Article  Google Scholar 

  • Yu G-R, Wen X-F, Sun X-M, Tanner BD, Lee X, Chen J-Y (2006) Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric For Meteorol 137:125–137

    Article  Google Scholar 

  • Zhao S, Peng C, Jiang H, Tian D, Lei X, Zhou X (2006) Land use change in Asia and the ecological consequences. Ecol Res 21:890–896

    Article  Google Scholar 

  • Zhisheng A, Guoxiong W, Jianping L, Youbin S, Yimin L, Weijian Z, Yanjun C, Anmin D, Li L, Jiangyu M, Hai C, Zhengguo S, Liangcheng T, Hong Y, Hong A, Hong C, Juan F (2015) Global monsoon dynamics and climate change. Ann Rev Earth Planet Sci 43:2.1–2.49. doi:10.1146/annurev-earth-060313-054623

  • Zscheischler J, Reichstein M, von Buttlar J, Mu M, Randerson JT, Mahecha MD (2014) Carbon cycle extremes during the 21st century in CMIP5 models: future evolution and attribution to climatic drivers. Geophys Res Lett 41:8853–8861. doi:10.1002/2014GL062409

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Environmental Research and Technology Development Fund (S-10) of the Ministry of the Environment, Japan, and a Grant-in-aid (No. 26281014) from the Japan Society for the Promotion of Science. This study used the ISI-MIP dataset supported by the Potsdam Institute for Climate Impact Research, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Ito.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, A., Nishina, K. & Noda, H.M. Evaluation of global warming impacts on the carbon budget of terrestrial ecosystems in monsoon Asia: a multi-model analysis. Ecol Res 31, 459–474 (2016). https://doi.org/10.1007/s11284-016-1354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1354-y

Keywords

Navigation