Skip to main content
Log in

A hybrid of the invasive plant Sphagneticola trilobata has similar competitive ability but different response to nitrogen deposition compared to parent

  • Original Article
  • Published:
Ecological Research

Abstract

Hybridization between introduced and related native species has been suggested to be a key driving force of evolutionary processes in invasions that may be accelerated by increasing nitrogen (N) deposition. We carried out two experiments to compare the competitive ability of a newly-reported putative hybrid (Sphagneticola calendulacea × Sphagneticola trilobata) to that of its invasive paternal parent and investigate its response to different N additions. Growth of the hybrid increased by 39.62 ± 15.69 % when grown with the native parent but showed no significant changes when grown with the invasive parent. Growth of invasive S. trilobata showed no significant changes when grown with the other two taxa. The hybrid and invasive parent inhibited the growth of the native parent by 33.27 ± 15.26 % and 78.56 ± 3.13 %, respectively. Low level N addition (50 kg N ha−1) enhanced the growth of both the hybrid and native parent, whereas medium and high levels of N additions (150, 300 kg N ha−1) had no effects on hybrid growth but decreased native parent growth. However, all N treatments had no significant effects on the growth of the invasive parent. Our results suggest that the hybrid is an equal competitor to its invasive parent and is more susceptible to N deposition. Therefore, this hybrid could be a threat to native diversity but may decline more than the invasive parent under high N conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405. doi:10.1016/0169-5347(92)90020-C

    Article  CAS  PubMed  Google Scholar 

  • Abbott RJ, James JK, Irwin JA, Comes HP (2000) Hybrid origin of the Oxford ragwort, Senecio squalidus L. Watsonia 23:123–138

    Google Scholar 

  • Ainouche ML, Baumel A, Salmon A, Yannic G (2003) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172. doi:10.1046/j.1469-8137.2003.00926.x

    Article  Google Scholar 

  • Anttila CK, Daehler CC, Rank NE, Strong DR (1998) Great male fitness of a rare invader (Spartina alterniflora, Poaceae) threatens a common native (Spartina foliosa) with hybridization. Am J Bot 85:1597–1601

    Article  CAS  PubMed  Google Scholar 

  • Bleeker W, Schmitz U, Ristow M (2007) Interspecific hybridization between alien and native plant species in Germany and its consequences for native biodiversity. Biol Conserv 137:248–253. doi:10.1016/j.biocon.2007.02.004

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity effects of terrestrial ecosystems: a synthesis. Ecol Appl 20:30–59. doi:org/10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  • Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40:344–353. doi:10.1046/j.1365-2664.2003.00789.x

    Article  Google Scholar 

  • Callaway RM, Ridenour WM, Laboski T, Weir T, Vivanco JM (2005) Natural selection for resistance to the allelopathic effects of invasive plants. J Ecol 93:576–583. doi:10.1111/j.1365-2745.2005.00994.x

    Article  Google Scholar 

  • Cornelissen JHC, Werger MJA, Castro-Díez P, van Rheenen JWA, Rowland AP (1997) Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111:460–469

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gress SE, Nichols TD, Northcraft CC, William TP (2007) Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology 88:119–130. doi:10.1890/0012-9658(2007)88[119:NLISED]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Grosholz E (2010) Avoidance by grazers facilitates spread of an invasive hybrid plant. Ecol Lett 13:145–153. doi:10.1111/j.1461-0248.2009.01409.x

    Article  CAS  PubMed  Google Scholar 

  • Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94:526–532. doi:10.3732/ajb.94.4.526

    Article  PubMed  Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  • Hättenschwiler S, Bretscher D (2001) Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Global Change Biol 7:565–579. doi:10.1046/j.1365-2486.2001.00402.x

    Article  Google Scholar 

  • He WM, Yu GL, Sun ZK (2011) Nitrogen deposition enhances Bromus tectorum invasion: biogeographic differences in growth and competitive ability between China and North American. Ecography 34:1059–1066. doi:10.1111/j.1600-0587.2011.06835.x

    Article  Google Scholar 

  • Hobbie S, Gough L (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453–462. doi:10.1007/s00442-002-0892-x

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Christopher BF (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330. doi:10.1038/nature07028

    Article  CAS  PubMed  Google Scholar 

  • Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in California serpentine grassland. Ecology 71:478–491. doi:org/10.2307/1940302

    Article  Google Scholar 

  • James JJ (2008) Leaf nitrogen productivity as a mechanism driving the success of invasive annual grasses under low and high nitrogen supply. J Arid Environ 72:1775–1784. doi:org/10.1016/j.jaridenv.2008.05.001

    Article  Google Scholar 

  • Krebs C, Gerber E, Matthies D, Schaffner U (2011) Herbivore resistance of invasive Fallopia species and their hybrids. Oecologia 167:1041–1052. doi:10.1007/s00442-011-2035-8

    Article  PubMed  Google Scholar 

  • Leishman MR, Thomson VP, Cooke J (2010) Native and exotic invasive plants have fundamentally similar carbon capture strategies. J Ecol 98:28–42. doi:10.1111/j.1365-2745.2009.01608.x

    Article  CAS  Google Scholar 

  • Li ZY, Xie Y (2002) Invasive species in China. China Forest Publishing House, Beijing

    Google Scholar 

  • Liu JX, Li ZF (2005) Effects of CO2 concentrations increasing on photosynthetic physiological characteristics of Wedelia trilobata. Guihaia 25:477–480

    Google Scholar 

  • Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CN, Zhang FS (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264. doi:10.1016/j.envpol.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  • Lowe PN, Lauenroth WK, Burke IC (2003) Effects of nitrogen availability on competition between Bromus tectorum and Bouteloua gracilis. Plant Ecol 167:247–254

    Article  Google Scholar 

  • Lv CQ, Tian HQ (2007) Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J Geophys Res 112:D22S05. doi:10.1029/2006JD007990

    Google Scholar 

  • MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biol 8:1028–1033. doi:10.1046/j.1365-2486.2002.00532.x

    Article  Google Scholar 

  • Maskell LC, Smart SM, Bullock JM, Thompson K, Stevens CJ (2010) Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biol 16:71–679. doi:10.1111/j.1365-2486.2009.02022.x

    Article  Google Scholar 

  • Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008) Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biol 14:03–412. doi:10.1111/j.1365-2486.2007.01503.x

    Google Scholar 

  • Nakaji T, Fukami M, Dokiya Y, Izuta T (2001) Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 15:453–461

    CAS  Google Scholar 

  • Ni GY, Schaffner U, Peng SL, Callaway RM (2010) Acroptilon repens, an Asian invader, has stronger competitive effects on species from America than species from its native range. Biol Invasions 12:3653–3663. doi:10.1007/s10530-010-9759-y

    Article  Google Scholar 

  • Poorter L (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:96–410. doi:10.1046/j.1365-2435.1999.00332.x

    Article  Google Scholar 

  • Poorter L, Van de Plassche M, Willems S, Boot RGA (2004) Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol 6:746–754. doi:10.1055/s-2004-821269

    Article  CAS  PubMed  Google Scholar 

  • Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012) Catalogue of alien plants of the Czech Republic (2nd): checklist update, taxonomic diversity and invasion patters. Preslia 84:55–255

    Google Scholar 

  • Rastetter EB, Kwiatkowski BL, Le Dizès S, Hobbie JE (2004) The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change. Biogeochemistry 69:37–62

    Article  CAS  Google Scholar 

  • Ren R, Mi FJ, Bai NB (2000) A chemometrics analysis on the data of precipitation chemistry of China. J Beijing Polytechnic University 26:90–95

    CAS  Google Scholar 

  • Rickey MA, Anderson RC (2004) Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. J Appl Ecol 41:88–896. doi:10.1111/j.0021-8901.2004.00948.x

    Article  Google Scholar 

  • Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105. doi:10.1007/s10530-008-9388-x

    Article  Google Scholar 

  • Song LY, Li CH, Peng SL (2010) Elevated CO2 increases energy-use efficiency of invasive Wedelia trilobata over its indigenous congener. Biol Invasions 12:1221–1230. doi:10.1007/s10530-009-9541-1

    Article  Google Scholar 

  • Tanaka Y (2007) Introgressive hybridization as the breakdown of postzygotic isolation: a theoretical perspective. Ecol Res 22:929–939. doi:10.1007/s11284-007-0384-x

    Article  Google Scholar 

  • Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM (2004) Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? J Appl Ecol 41:139–150

    Article  CAS  Google Scholar 

  • Tu LH, Hu HL, Hu TX, Zhang J, Liu L, Li RH, Dai HZ, Luo SH (2011) Decomposition of different litter fractions in a subtropical bamboo ecosystem as affected by experimental nitrogen deposition. Pedosphere 21:685–695

    Article  CAS  Google Scholar 

  • Vasquez E, Sheley R, Svejcar T (2008) Nitrogen enhances the competitive ability of cheatgrass (Bromus tectorum) relative to native grasses. Invasive plant Sci Manag 1:287–295

    Article  CAS  Google Scholar 

  • Vilà M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105:229–238. doi:10.1111/j.0030-1299.2004.12682.x

    Article  Google Scholar 

  • Vilà M, Weber E, D’Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217

    Article  Google Scholar 

  • Vilà M, Corbin JD, Dukes JS, Pino J, Smith SD (2007) Linking plant invasions to global environmental change. In: Canadell JJ, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. The IGBP series, Part B. Springer, Berlin, pp 93–102

    Chapter  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Wu YQ, Hu YJ, Chen JN (2005) Reproductive characteristics of alien plant Wedelia trilobata. Acta Scientiarum Naturalium Universitatis Sunyatseni 44:93–96

    Google Scholar 

  • Wu W, Zhou RC, Ni GY, Shen H, Ge XJ (2013) Is a new invasive herb emerging? Molecular confirmation and preliminary evaluation of natural hybridization between the invasive Sphagneticola trilobata (Asteracear) and its native congener S. calendulacea in South China. Biol Invasions 15:75–88. doi:10.1007/s10530-012-0269-y

    Article  Google Scholar 

  • Zhi YB, Li HL, An SQ, Zhao L, Zhou CF, Deng ZF (2007) Inter-specific competition: Spartina alterniflora is replacing Spartina anglica in coastal China. Estuar Coast Shelf Sci 74:437–448

    Article  Google Scholar 

  • Zhu LW, Zhao P, Cai XA, Zeng XP, Ni GY, Zhang JY, Zou LL, Mei TT, Yu MH (2012) Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees. Trees 26:535–542. doi:10.1007/s00468-011-0615-1

    Article  Google Scholar 

Download references

Acknowledgments

We are particularly indebted to G Li for his helpful discussions and comments on the manuscript. We thank Q-Q Huang, Y-P Hou, B-M Chen for their valuable comments and suggestions on earlier versions of this manuscript. This study was supported by grants from the Natural Science Foundation of China (31200380, 41030638), the Knowledge Innovation Program of the CAS (KSCX2-EW-J-28), and the Natural Science Foundation of Guangdong Province (S2011040000331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 326 kb)

About this article

Cite this article

Ni, G., Zhao, P., Wu, W. et al. A hybrid of the invasive plant Sphagneticola trilobata has similar competitive ability but different response to nitrogen deposition compared to parent. Ecol Res 29, 331–339 (2014). https://doi.org/10.1007/s11284-014-1130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1130-9

Keywords

Navigation