Skip to main content

Linking Plant Invasions to Global Environmental Change

  • Chapter
Terrestrial Ecosystems in a Changing World

Part of the book series: Global Change — The IGBP Series ((GLOBALCHANGE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, McDowell WH, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty SG, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. BioScience 48:921–934

    Article  Google Scholar 

  • Aber JD, Nadelhoffer KJ, Steduler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386

    Article  Google Scholar 

  • Allen EB (2003) Restoration of Artemisia shrublands invaded by exotic annual Bromus: A comparison between southern California and the Intermountain region. In: Hild AL, Shaw NL, Meyer SE, Schupp EW, Booth T (Compilers) Seed and soil dynamics in shrubland ecosystems: Proceedings; August 12–16, 2002, Laramie, Wyoming, Proceedings RMRS-P-31. U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Ogden, Utah, pp 9–17

    Google Scholar 

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192

    Article  Google Scholar 

  • Beerling DJ, Huntley B, Bailey JP (1995) Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surfaces. Journal of Vegetation Science 6:269–282

    Article  Google Scholar 

  • Belote RT, Weltzin JF, Norby RJ (2003) Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist 161:827–835

    Article  Google Scholar 

  • Bobbink R (1991) Effects of nutrient enrichment in Dutch chalk grasslands. Journal of Applied Ecology 28:28–41

    Article  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and seminatural European vegetation. Journal of Ecology 86:717–738

    Article  Google Scholar 

  • Boutin C, Jobin B (1998) Intensity of agricultural practices and effects on adjacent habitats. Ecological Applications 8:544–557

    Article  Google Scholar 

  • Brooks ML (1999) Alien annual grasses and fire in the Mojave Desert. Madroño 46:13–19

    Google Scholar 

  • Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. Journal of Applied Ecology 40:344–353

    Google Scholar 

  • Brown VC (1995) Insect herbivores and gaseous air pollutants: current knowledge and predictions. In: Harrington R, Stork NE (eds) Insects in a changing environment. Academic Press, London, pp 22–29

    Google Scholar 

  • Corbin JD, D’Antonio CM (2004) Effects of invasive species on soil nitrogen cycling: Implications for restoration. Weed Technology 18:1464–1467

    Article  Google Scholar 

  • D’Antonio CM, Corbin JD (2003) Effects of plant invaders on nutrient cycling: Using models to explore the link between invasion and development of species effects. In: Canham CD, Cole JC, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton, pp 363–384

    Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23:63–87

    Google Scholar 

  • D’Antonio CM, Dudley TL, Mack MC (1999) Disturbance and biological invasions: direct effects and feedbacks. In: Walker LR (ed) Ecosystems of disturbed ground. Elsevier, New York, New York, USA, pp 413–452

    Google Scholar 

  • DeVries W, Leeters EM, Hendricks CA (1995) Effects of acid deposition on Dutch forest ecosystems. Water, Air and Soil Pollution 85:1063–1068

    Article  Google Scholar 

  • Dukes JS (2000) Will the increasing atmospheric CO2 concentration affect the success of invasive species? In: Mooney HA, Hobbs RJ (eds) Invasive Species in a Changing World. Island Press, Washington, DC, pp 95–113

    Google Scholar 

  • Dukes JS (2002) Comparison of the effect of elevated CO2 on an invasive species (Centaurea solstitialis) in monoculture and community settings. Plant Ecology 160:225–234

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14:135–139

    Article  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Article  Google Scholar 

  • Ehrenfeld J (2003) Effects of exotic plant invasions of ecosystem nutrient cycling processes. Ecosystems 6:503–523

    Article  Google Scholar 

  • Falkengren-Grerup U (1986) Soil acidification and vegetation changes in deciduous forests in southern Sweden. Oecologia 70:339–347

    Article  Google Scholar 

  • Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications 8:706–733

    Article  Google Scholar 

  • Fenn ME, Haeuber R, Tonnesen GS, Baron JS, Grossman-Clarke S, Hope D, Jaffe DA, Copeland S, Geisher L, Rueth HM, Sickman JO (2003a) Nitrogen emissions, deposition, and monitoring in the western United States. BioScience 53:391–403

    Article  Google Scholar 

  • Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW, Neitlich P (2003b) Ecological effects of nitrogen deposition in the western United States. BioScience 53:404–420

    Article  Google Scholar 

  • Galloway JN, Schlesinger WH, Levy H II, Michaels A, Schnoor JL (1995) Nitrogen fixation: Anthropogenic enhancement — environmental response. Global Biogeochemical Cycles 9:235–252

    Article  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. BioScience 53:341–356

    Article  Google Scholar 

  • Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conservation Biology 17:420–432

    Article  Google Scholar 

  • Grotkopp E, Rejmánek M, Rost TL (2002) Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. The American Naturalist 159:396–419

    Article  Google Scholar 

  • Hättenschwiler S, Körner C (2003) Does elevated CO2 facilitate naturalization of the non-indigenous Prunus laurocerasus in Swiss temperate forests? Functional Ecology 17:778–785

    Article  Google Scholar 

  • Hobbs RJ (2000) Land-use Changes and Invasions. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, pp 55–64

    Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conservation Biology 6:324–337

    Article  Google Scholar 

  • Hogbom L, Hogberg P (1991) Nitrate nutrition of Deschampsia flexuosa (L.) Trin. in relation to nitrogen deposition in Sweden. Oecologia 87:488–494

    Article  Google Scholar 

  • Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in California serpentine grassland. Ecology 71:478–491

    Article  Google Scholar 

  • Huxman TE, Smith SD (2001) Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave Desert. Oecologia 128:193–201

    Article  Google Scholar 

  • Huxman TE, Hamerlynck EP, Jordan DN, Salsman KJ, Smith SD (1998) The effects of parental CO2 environment on seed quality and subsequent seedling performance in Bromus rubens. Oecologia 114:202–208

    Article  Google Scholar 

  • Huxman TE, Hamerlynck EP, Smith SD (1999) Reproductive allocation and seed production in Bromus madritensis ssp. rubens at elevated atmospheric CO2. Functional Ecology 13:769–777

    Article  Google Scholar 

  • IPCC (2001) Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Jackson R, Jobbagy E (2007) Vegetation changes and carbon and water dynamics. In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer-Verlag, Berlin

    Google Scholar 

  • Jefferies RL, Maron JL (1997) The embarrassment of riches: atmospheric deposition of nitrogen and community and ecosystem processes. Trends in Ecology and Evolution 12:74–78

    Article  Google Scholar 

  • Jenkins JC, Aber JD, Canham (1999) Hemlock woolly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Canadian Journal of Forest Research 29:630–645

    Article  Google Scholar 

  • Kellner O (1993) Effects on associated flora of sylvicultural nitrogen fertilization repeated at long intervals. Journal of Applied Ecology 30:563–574

    Article  Google Scholar 

  • Knapp PA (1998) Spatio-temporal patterns of large grassland fires in the Intermountain West, U.S.A. Global Ecol Biogeogr 7:259–272

    Article  Google Scholar 

  • Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF (2003a) Climate change and biotic invasions: a case history of a tropical woody vine. Biological Invasions 5:145–165

    Article  Google Scholar 

  • Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF (2003b) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp indica in Australia. Journal of Applied Ecology 40:111–124

    Article  Google Scholar 

  • Latty EF, Canham CD, Marks PL (2003) Beech bark disease in northern hardwood forests: the importance of nitrogen dynamics and forest history for disease severity. Canadian Journal of Forest Research 33:257–268

    Article  Google Scholar 

  • Lavorel S, DÍaz S, Pausas J, Garnier E, Neilson R (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer-Verlag, Berlin

    Google Scholar 

  • Le Maitre DC, Wilgen BV, Chapman R, McKelly D (1996) Invasive plants and water resources in the Eastern Cape Province, South Africa: modelling the consequences of a lack of management. Journal of Applied Ecology 33:161–172

    Article  Google Scholar 

  • Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impact of exotic plant invasions. Philosophical Transactions of the Royal Society of London B 270:775–781

    Google Scholar 

  • Liebhold AM, MacDonald WL, Bergdahl D, Mastro VC (1995) Invasion by exotic forest pests: A threat to forest ecosystems. Forest Science Monographs 30:1–49

    Google Scholar 

  • Lockwood JL, Mckinney ML (2001) Biotic homogenization. Kluwer Academic. Plenum Publishers, New York

    Google Scholar 

  • Mack RN (1981) Invasion of Bromus tectorum L. into western North America: an ecological chronicle. Agro-Ecosystems 7:145–165

    Article  Google Scholar 

  • Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends in Ecology and Evolution 13:195–198

    Article  Google Scholar 

  • Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration rates under scenarios of global climate change. Journal of Biogeography 29:835–849

    Article  Google Scholar 

  • Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105:302–312

    Article  Google Scholar 

  • McNeely JA (2001) The great reshuffling. Human dimensions of invasive alien species. IUCN, Cambridge

    Google Scholar 

  • Moore PD (2004) Favoured aliens for the future. Nature 427:594

    Article  Google Scholar 

  • Murphy DD, Ehrlich PR (1989) Conservation biology of California’s remnant native grasslands. In: Huenneke LF, Mooney HA (eds) Grassland structure and function: The California annual grassland. Klewer Academic Publishers, The Netherlands, pp 201–211

    Google Scholar 

  • Nagel JM, Griffin KL (2001) Construction cost and invasive potential: comparing Lythrum salicaria (Lythraceae) with co-occurring native species along pond banks. American Journal of Botany 88:2252–2258

    Google Scholar 

  • Nagel JM, Griffin KL (2004) Can gas-exchange characteristics help explain the invasive success of Lythrum salicaria? Biological Invasions 6:101–111

    Article  Google Scholar 

  • Nagel JM, Huxman TE, Griffin KL, Smith SD (2004) CO2 enrichment reduces the energetic cost of biomass construction in an invasive desert grass. Ecology 85:100–106

    Google Scholar 

  • Norby R, Rustad L, Beier C, Zavaleta E, Parton B, McMurtrie R (2007) Multiple factor interactions on ecosystem function (CO2, temperature, nutrients, water (TERACC)). In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer-Verlag, Berlin

    Google Scholar 

  • Parendes LA, Jones JA (1999) Role of light availability and dispersal in exotic plant invasion along roads and streams in the HJ Andrews Experimental Forest, Oregon. Conservation Biology 14:64–75

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Patterson DT (1995) Weeds in a changing climate. Weed Science 43:685–701

    Google Scholar 

  • Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology 8:531–544

    Article  Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting the species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. BioScience 51:363–371

    Article  Google Scholar 

  • Peterson AT, Papes M, Kluza DA (2003) Predicting the potential invasive distribution of four alien plant species in North America. Weed Science 51:863–868

    Article  Google Scholar 

  • Pino J, Font X, Carbó J, Jové M, Pallarés L (2005) Large-scale correlates of alien plant invasion in Catalonia (NE Spain). Biological Conservation 122:339–350

    Article  Google Scholar 

  • Pino J, SeguÍ JM, Alvarez N (2006) Invasibility of four plant communities in the Llobregat delta (Catalonia, NE of Spain) in relation to their historical stability. Hydrobiologia 570:257–263

    Article  Google Scholar 

  • Pysek P, Prach K, Mandák B (1998) Invasions of alien plants into habitats of central european landscape: an historical pattern. In: Starfinger U, Edwards K, Kowarik I, Williamson M, editors. Plant invasions: ecological mechanisms and human responses. Backhuys Publishers, Leiden, pp 23–32

    Google Scholar 

  • Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biological Conservation 78:171–181

    Article  Google Scholar 

  • Rejmánek M (2000) Invasive plants: approaches and predictions. Austral Ecology 25:497–506

    Article  Google Scholar 

  • Reynolds JF, Maestre F, Lambin EF, Stafford-Smith DM, Valentin C (2007) Natural and human dimensions of land degradation: causes and consequences. In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer-Verlag, Berlin

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000a) Plant invasions — the role of mutualisms. Biological Reviews 75:65–93

    Google Scholar 

  • Richardson DM, Bond WJ, Dean RJ, Higgins SI, Midgley GF, Milton SJ, Powrie LW, Rutherford MC, Samways MJ, Schulze RE (2000b) In: Mooney HA, Hobbs RJ (eds) Invasive alien species and global change: a South African perspective. Invasive species in a changing world. Island Press, Washington, pp 303–349

    Google Scholar 

  • Romney EM, Wallance A, Hunter RB (1978) Plant response to nitrogen fertilization in the Northern Mojave Desert and its relationship to water manipulation. In: West NE, Skujins J (eds) Nitrogen in desert ecosystems. Dowden, Hutchinson & Ross Inc., Stroudsburg, pp 232–243

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  Google Scholar 

  • Rosen K, Gunderson P, Tegnhammer L, Johansson M, Frogner T (1992) Nitrogen enrichment of Nordic forests: the concept of critical loads. Ambio 21:364–368

    Google Scholar 

  • Roura-Pascual N, Suarez AV, Gómez C, Pons P, Touyama Y, Wild AL, Peterson AT (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society of London 271:2527–2534

    Article  Google Scholar 

  • Sasek TW, Strain BR (1991) Effects of CO2 enrichment on the growth and morphology of a native and an introduced honeysuckle vine. American Journal of Botany 78:69–75

    Article  Google Scholar 

  • Smith SD, Strain BR, Sharkey TD (1987) Effects of CO2 enrichment on four Great Basin grasses. Functional Ecology 1:139–143

    Article  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  Google Scholar 

  • Soulé ME (1991) Conservation: tactics for a constant crisis. Science 253:744–750

    Article  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  Google Scholar 

  • Thimoneir A, Dupouey JL, Timbal J (1992) Floristic changes in the herb-layer vegetation of a deciduous forest in the Lorraine Plain under the influence of atmospheric deposition. Forest Ecology and Management 55:149–167

    Article  Google Scholar 

  • Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems 7:109–133

    Article  Google Scholar 

  • Tyser RW, Worley CA (1992) Alien flora in grasslands adjacent to road and trail corridors in Glacier National Park, Montana (U.S.A.). Conservation Biology 6:253–262

    Article  Google Scholar 

  • van Breemen N, van Dijk HFG (1988) Ecosystem effects of atmospheric deposition on nitrogen in The Netherlands. Environmental Pollution 54:249–274

    Article  Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biological Conservation 55:235–254

    Article  Google Scholar 

  • Vilà M, Pujadas J (2001) Land-use and socio-economic correlates of plant invasions in European and North African countries. Biological Conservation 100:397–401

    Article  Google Scholar 

  • Vilà M, Burriel JA, Pino J, Chamizo J, Llach E, Porterias M, Vives M (2003) Association between Opuntia spp. invasion and changes in land-cover in the Mediterranean region. Global Change Biology 9:1234–1239

    Article  Google Scholar 

  • Vinton MA, Burke IC (1995) Interactions between individual plant species and soil nutrient status in shortgrass steppe. Ecology 76:1116–1133

    Article  Google Scholar 

  • Vitousek P (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation of land and sea: How can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

    Article  Google Scholar 

  • Vitousek PM, Howarth RW, Likens GE, Matson PA, Schindler D, Schlesinger WH, Tilman GD (1997) Human alteration of the global nitrogen cycle: Causes and consequences. Issues in Ecology 1:1–17

    Google Scholar 

  • Walther GR (2002) Weakening of climatic constraints with global warming and its consequences for evergreen broad-leaved species. Folia Geobotanica 37:129–139

    Google Scholar 

  • Wedin DA, Tilman D (1996) Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274:1720–1723

    Article  Google Scholar 

  • Weiss SB (1999) Cars, cows, and checkerspot butterflies: Nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conservation Biology 13:1476–1486

    Article  Google Scholar 

  • White TA, Campbell BD, Kemp PD, Hunt CL (2000) Sensitivity of three grassland communities to simulated extreme temperature and rainfall events. Global Change Biology 6:671–684

    Article  Google Scholar 

  • White TA, Campbell BD, Kemp PD, Hunt CL (2001) Impacts of extreme climatic events on competition during grassland invasions. Global Change Biology 7:1–13

    Article  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conservation Biology 16:1192–1203

    Article  Google Scholar 

  • Young JA, Evans RA (1978) Population dynamics after wildfires in sagebrush grasslands. Journal of Range Management 31:283–289

    Google Scholar 

  • Zavaleta ES, Royval JL (2002) Climate change and the susceptibility of U.S. ecosystems to biological invasions: two cases of expected range expansion. In: Root TL (ed) Wildlife Responses to Climate Change. Island Press, Washington, pp 277–341

    Google Scholar 

  • Ziska LH (2002) Influence of rising atmospheric CO2 since 1900 on early growth and photosynthetic response of a noxious invasive weed, Canada thistle (Cirsium arvense). Functional Plant Biology 29:1387–1392

    Article  Google Scholar 

  • Ziska LH (2003) Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. Journal of Experimental Botany 54:395–404

    Article  Google Scholar 

  • Ziska LH, Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergyinducing species: implications for public health. Australian Journal of Plant Physiology 27:893–898

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vilà, M., Corbin, J.D., Dukes, J.S., Pino, J., Smith, S.D. (2007). Linking Plant Invasions to Global Environmental Change. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_8

Download citation

Publish with us

Policies and ethics