Advertisement

Ecological Research

, Volume 27, Issue 2, pp 323–332 | Cite as

Variation in liana abundance and biomass along an elevational gradient in the tropical Atlantic Forest (Brazil)

  • Luciana F. AlvesEmail author
  • Marco A. Assis
  • Juliano van Melis
  • Ana L. S. Barros
  • Simone A. Vieira
  • Fernando R. Martins
  • Luiz A. Martinelli
  • Carlos A. Joly
Original Article

Abstract

Lianas play a key role in forest structure, species diversity, as well as functional aspects of tropical forests. Although the study of lianas in the tropics has increased dramatically in recent years, basic information on liana communities for the Brazilian Atlantic Forest is still scarce. To understand general patterns of liana abundance and biomass along an elevational gradient (0–1,100 m asl) of coastal Atlantic Forest, we carried out a standard census for lianas ≥1 cm in five 1-ha plots distributed across different forest sites. On average, we found a twofold variation in liana abundance and biomass between lowland and other forest types. Large lianas (≥10 cm) accounted for 26–35% of total liana biomass at lower elevations, but they were not recorded in montane forests. Although the abundance of lianas displayed strong spatial structure at short distances, the present local forest structure played a minor role structuring liana communities at the scale of 0.01 ha. Compared to similar moist and wet Neotropical forests, lianas are slightly less abundant in the Atlantic Forest, but the total biomass is similar. Our study highlights two important points: (1) despite some studies have shown the importance of small-scale canopy disturbance and support availability, the spatial scale of the relationships between lianas and forest structure can vary greatly among tropical forests; (2) our results add to the evidence that past canopy disturbance levels and minimum temperature variation exert influence on the structure of liana communities in tropical moist forests, particularly along short and steep elevational gradients.

Keywords

Aboveground biomass Climbers Elevation Forest structure Tropical moist forest 

Abbreviation

AGB

Aboveground biomass

Notes

Acknowledgments

We gratefully acknowledge the field assistance of V.F. Silva, V.A. Kamimura, W.T. Kakuno, O.A. Santos, S. Santos, A.L.C. Rochelle, B.A. Aranha, and E. A. Manzi. We are indebted with Instituto Florestal de São Paulo and Fazenda Capricornio staff for their logistic support during the fieldwork. This research was supported by the State of São Paulo Research Foundation (FAPESP) as part of the Thematic Project Functional Gradient (FAPESP 03/12595-7 to C.A. Joly and L.A. Martinelli), within the BIOTA/FAPESP Program 74—The Biodiversity Virtual Institute (http://www.biota.org.br), by the Brazilian National Research Council (CNPq 476131/2006-5 to M.A. Assis), and by CAPES (scholarship to J. van Melis). COTEC/IF 41.065/2005 and IBAMA/CGEN 093/2005 permit.

Supplementary material

11284_2011_902_MOESM1_ESM.doc (78 kb)
Supplementary material (DOC 78 kb)

References

  1. Alves LF, Vieira S, Scaranello MA, Camargo PB, Santos FA, Joly CA, Martinelli LA (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 260:679–691. doi: 10.1016/j.foreco.2010.05.023 CrossRefGoogle Scholar
  2. Balfour DA, Bond WJ (1993) Factors limiting climber distribution and abundance in a southern African forest. J Ecol 81:93–99CrossRefGoogle Scholar
  3. Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New YorkGoogle Scholar
  4. Cai Z, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161:25–33. doi: 10.1007/s00442-009-1355-4 PubMedCrossRefGoogle Scholar
  5. Campanello PI, Gatti MG, Ares A, Montti L, Goldstein G (2007) Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest. For Ecol Manag 252:108–117. doi: 10.1016/j.foreco.2007.06.032 CrossRefGoogle Scholar
  6. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi: 10.1007/s00442-005-0100-x PubMedCrossRefGoogle Scholar
  7. Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and hemiepiphytes in a Costa Rican tropical wet forest. J Trop Ecol 6:321–331CrossRefGoogle Scholar
  8. Clark DB, Clark DA (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag 137:185–198CrossRefGoogle Scholar
  9. DeWalt SJ, Chave J (2004) Structure and biomass of four lowland Neotropical forests. Biotropica 36:7–19Google Scholar
  10. DeWalt SJ, Ickeset K, Nilus R, Harms KE, Burslem DFRP (2006) Liana habitat associations and community structure in a Bornean lowland tropical forest. Plant Ecol 186:203–216. doi: 10.1007/s11258-006-9123-6 CrossRefGoogle Scholar
  11. DeWalt SJ, Schnitzer SA, Chave J, Bongers F et al (2010) Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42:309–317. doi: 10.1111/j.1744-7429.2009.00589.x CrossRefGoogle Scholar
  12. DeWalt SJ, Schnitzer SA, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16:1–20CrossRefGoogle Scholar
  13. Ewers FW (1985) Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull 6:309–317Google Scholar
  14. Foster JR, Townsend PA, Zganjar CE (2008) Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sens Environ 112:2104–2117. doi: 10.1016/j.rse.2007.07.027 CrossRefGoogle Scholar
  15. Gehring C, Park S, Denich M (2004) Liana allometric biomass equations for Amazonian primary and secondary forest. For Ecol Manag 195:69–83CrossRefGoogle Scholar
  16. Gentry AH (1991) Distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) Biology of vines. Cambridge University Press, Cambridge, pp 3–49Google Scholar
  17. Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of aboveground biomass for an eastern Amazonian forest. J Trop Ecol 16:327–336CrossRefGoogle Scholar
  18. Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt SJ, Ewango CEN, Foster R, Kenflack D, Martínez-Ramos M, Parren M, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Thomas DW (2006) A standard protocol for lianas censuses. Biotropica 38:256–261. doi: 10.1111/j.1744-7429.2006.00134.x CrossRefGoogle Scholar
  19. Hegarty EE, Caballé G (1991) Distribution and abundance of vines in forest communities. In: Putz FE, Mooney HA (eds) Biology of vines. Cambridge University Press, Cambridge, pp 263–282Google Scholar
  20. Henderson A, Galeano G, Bernal B (1995) Field guide to the palms of the Americas. Princeton University Press, New JerseyGoogle Scholar
  21. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  22. Homeier J, Englert F, Leuschner C, Weigelt P, Unger M (2010) Factors controlling the abundance of lianas along an altitudinal transect of tropical forests in Ecuador. For Ecol Manag 259:1399–1405. doi: 10.1016/j.foreco.2010.01.008 CrossRefGoogle Scholar
  23. Hu L, Li M, Li Z (2010) Geographical and environmental gradients of lianas and vines in China. Glob Ecol Biogeogr 19:554–561. doi: 10.1111/j.1466-8238.2010.00527.x Google Scholar
  24. Ibarra-Manríquez G, Martínez-Ramos M (2002) Landscape variation of liana communities in a Neotropical rain forest. Plant Ecol 160:91–112CrossRefGoogle Scholar
  25. Ingwell LL, Wright SJ, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98:879–887. doi: 10.1111/j.1365-2745.2010.01676.x CrossRefGoogle Scholar
  26. IPT—Instituto de Pesquisas Tecnológicas (2000) Diagnóstico da situação atual dos recursos hídricos da Unidade de Gerenciamento dos Recursos Hídricos do Litoral Norte—UGRHI-3: Relatório 46172 Governo do Estado de São PauloGoogle Scholar
  27. Joly CA, Martinelli LA, Alves LF, Vieira SA, Tamashiro JY, Aidar MPM, Camargo PBC, Assis MA, Bernacci LC (2008) As Parcelas Permanentes do Projeto Temático Biota Gradiente Funcional: Composição Florística, Estrutura e Funcionamento da Floresta Ombrófila Densa dos Núcleos Picinguaba e Santa Virgínia do Parque Estadual da Serra do Mar, Estado de São Paulo, Brasil. In: Sanquetta CR (ed) Experiencias de monitoramento no bioma Mata Atlantica com uso de parcelas permanentes. RedeMAP and Funpar, Curitiba, pp 109–148Google Scholar
  28. Kazda M, Miladera EJC, Salzer J (2009) Optimisation of spatial allocation patterns in lianas compared to trees used for support. Trees 23:295–304. doi: 0.1007/s00468-008-0277-9 CrossRefGoogle Scholar
  29. Korner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574PubMedCrossRefGoogle Scholar
  30. Laurance WF, Perez-Salicrup D, Delamonica P, Fearnside PM, D’Angelo S, Jerozolinski A, Pohl L, Lovejoy TE (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105–116CrossRefGoogle Scholar
  31. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  32. Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138CrossRefGoogle Scholar
  33. Letcher SG, Chazdon RL (2009) Lianas and self-supporting plants during forest succession. For Ecol Manag 257:2150–2156. doi: 10.1016/j.foreco.2009.02.028 CrossRefGoogle Scholar
  34. Lima RAF, Moura LC (2008) Gap disturbance regime and composition in the Atlantic Montane Rain Forest: the influence of topography. Plant Ecol 197:239–253. doi: 10.1007/s11258-007-9374-x CrossRefGoogle Scholar
  35. Madeira BG, Espırito-Santo MM, D’Angelo Neto S, Nunes YRF, Sanchez-Azofeifa GA, Fernandes GW, Quesada M (2009) Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol 201:291–304. doi: 10.1007/s11258-009-9580-9 CrossRefGoogle Scholar
  36. Malizia A, Grau HR (2006) Liana-host tree associations in a subtropical montane forest of north-western Argentina. J Trop Ecol 22:331–339CrossRefGoogle Scholar
  37. Malizia A, Grau HR, Lichstein JW (2010) Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. J Veg Sci 21:551–560. doi: 10.1111/j.1654-1103.2009.01162.x CrossRefGoogle Scholar
  38. Martins SC (2010) Caracterização dos solos e serapilheira ao longo do gradiente altitudinal da Mata Atlântica, Estado de São Paulo. Dissertation, Universidade de São PauloGoogle Scholar
  39. Mascaro J, Schnitzer SA, Carson WP (2004) Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica Forest. Ecol Manag 190:3–14CrossRefGoogle Scholar
  40. Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301CrossRefGoogle Scholar
  41. Molina-Freaner F, Gamez R, Tinoco-Ojaguren C, Castellanos AE (2004) Vine species diversity across environmental gradients in northwestern Mexico. Biodivers Conserv 13:1853–1874CrossRefGoogle Scholar
  42. Morellato LPC, Leitao-Filho HF (1996) Reproductive phenology of climbers in a southeasten Brazilian Forest. Biotropica 28:180–191CrossRefGoogle Scholar
  43. Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32:786–792Google Scholar
  44. Murray-Smith C, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv Biol 23:151–163. doi: 10.1111/j.1523-1739.2008.01075.x PubMedCrossRefGoogle Scholar
  45. Myers N, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  46. Nabe-Nielsen J (2001) Diversity and distribution of lianas in a Neotropical rain forest, Yasuní National Park, Ecuador. J Trop Ecol 17:1–19CrossRefGoogle Scholar
  47. Nascimento HEM, Laurance WF (2002) Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. For Ecol Manag 168:311–321CrossRefGoogle Scholar
  48. Negrelle RRB (2002) The Atlantic Forest in the Volta Velha Reserve: a tropical rain forest site outside the tropics. Biodivers Conserv 11:887–917CrossRefGoogle Scholar
  49. Nesheim I, Økland RH (2007) Do vine species in Neotropical forest see the forest or the trees? J Veg Sci 18:395–404CrossRefGoogle Scholar
  50. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810Google Scholar
  51. Parthasarathy N, Muthuramkumar S, Reddy MS (2004) Patterns of liana diversity in tropical evergreen forests of peninsular India. For Ecol Manag 190:15–31CrossRefGoogle Scholar
  52. Phillips OL, Baker TR (2001) Field manual for plot establishment and remeasurement RAINFOR (Amazon Forest Inventory Network). http://www.geog.leeds.ac.uk/projects/rainfor. Accessed June 2009
  53. Phillips OL, Martínez RV, Mendoza AM, Baker TR, Vargas PN (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:1250–1258CrossRefGoogle Scholar
  54. Phillips OL, Martínez RV, Arroyo L, Baker TR et al (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774PubMedCrossRefGoogle Scholar
  55. Putz FE (1983) Liana biomass and leaf area of a tierra firme forest in the Rio Negro basin, Venezuela. Biotropica 15:185–189CrossRefGoogle Scholar
  56. Putz FE (1984) How trees avoid and shed lianas. Biotropica 16:19–23CrossRefGoogle Scholar
  57. Putz FE, Mooney HE (1991) The biology of vines. Cambridge University Press, CambridgeGoogle Scholar
  58. Putz FE, Chai P (1987) Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. J Ecol 75:523–531CrossRefGoogle Scholar
  59. Rosenberg MS (2001) PASSAGE pattern analysis, spatial statistics, and geographic exegesis version 11 (Release 34). Department of Biology, Arizona State University, AZ. http://wwwpassagesoftwarenet. Accessed 15 June 2009
  60. Runkle JR (1982) Patterns of disturbance in some old-growth mesic forests of North America. Ecology 63:1533–1556CrossRefGoogle Scholar
  61. Sanchez M (2001) Composição florística e estrutura da comunidade arbórea num gradiente altitudinal da Mata Atlântica. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  62. Sarmiento G, Pinillos M, Garay I (2005) Biomass variability in tropical American lowland rainforests. Ecotropicos 18:1–20Google Scholar
  63. Scaranello MAS (2010) Dinamica da comunidade arbórea de Floresta Ombrófila Densa de Terras Baixas e de Restinga no Parque Estadual da Serra do Mar, SP. Thesis, Universidade de São PauloGoogle Scholar
  64. Schnitzer SA (2005) A mechanistic explanation for the global patterns of liana abundance and distribution. Am Nat 166:262–276PubMedCrossRefGoogle Scholar
  65. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230CrossRefGoogle Scholar
  66. Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13:849–857. doi: 10.1111/j.1461-0248.2010.01480.x PubMedCrossRefGoogle Scholar
  67. Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666CrossRefGoogle Scholar
  68. Schnitzer SA, Kuzee ME, Bongers F (2005) Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J Ecol 93:1115–1125CrossRefGoogle Scholar
  69. Schnitzer SA, Dewalt SJ, Chave J (2006) Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38:581–591. doi: 10.1111/j.1744-7429.2006.00187.x CrossRefGoogle Scholar
  70. Schnitzer SA, Rutishauser S, Aguilar S (2008) Supplemental protocol for liana censuses. For Ecol Manag 255:1044–1049. doi: 10.1016/j.foreco.2007.10.012 CrossRefGoogle Scholar
  71. Selaya NG, Anten NPR (2008) Differences in biomass allocation, light interception and mechanical stability between lianas and trees in early secondary tropical forest. Funct Ecol 22:30–39. doi: 10.1111/j.1365-2435.2007.01350.x Google Scholar
  72. Sentelhas PC, Pereira AR, Marin FR, Angelocci LR, Alfonsi RR, Caramori PF, Swart S (1999) Balanços Hídricos Climatológicos do Brasil—500 balanços hídricos de localidades brasileiras. ESALQ, Piracicaba. http://www.bdclima.cnpm.embrapa.br/index.php. Accessed June 2009
  73. Sousa-Neto E, Carmo JB, Keller M, Martins SC, Alves LF, Vieira SA, Piccolo MC, Camargo P, Couto HTZ, Joly CA, Martinelli LA (2011) Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences 8:733–742. doi: 10.5194/bg-8-733-2011 CrossRefGoogle Scholar
  74. Swaine MD, Grace J (2007) Lianas may be favored by low rainfall: evidence from Ghana. Plant Ecol 192:271–276CrossRefGoogle Scholar
  75. Tabarelli M, Mantovani W (2000) Gap-phase regeneration in a tropical montane forest: the effects of gap structure and bamboo species. Plant Ecol 148:149–155CrossRefGoogle Scholar
  76. Toledo-Aceves T, Swaine MD (2008) Effects of lianas on tree regeneration in gaps and forest understorey in a tropical forest in Ghana. J Veg Sci 19:717–728. doi: 10.3170/2008-8-18444 CrossRefGoogle Scholar
  77. van der Heijden GMF, Phillips OL (2008) What controls liana success in Neotropical forests? Glob Ecol Biogeogr 17:372–383. doi: 10.1111/j.1466-8238.2007.00376.x CrossRefGoogle Scholar
  78. Wright SJ, Calderón O, Hernandéz AS, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484–489CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2011

Authors and Affiliations

  • Luciana F. Alves
    • 1
    • 2
    • 3
    Email author
  • Marco A. Assis
    • 4
  • Juliano van Melis
    • 5
  • Ana L. S. Barros
    • 4
  • Simone A. Vieira
    • 6
  • Fernando R. Martins
    • 5
  • Luiz A. Martinelli
    • 7
  • Carlos A. Joly
    • 5
  1. 1.INSTAARUniversity of ColoradoBoulderUSA
  2. 2.University of ArizonaTucsonUSA
  3. 3.Instituto de BotânicaSão PauloBrazil
  4. 4.Depto. de BotânicaUniversidade Estadual PaulistaRio ClaroBrazil
  5. 5.Depto de Biologia VegetalUniversidade Estadual de CampinasCampinasBrazil
  6. 6.NEPAMUniversidade Estadual de CampinasCampinasBrazil
  7. 7.CENA/EsalqUniversidade de São PauloPiracicabaBrazil

Personalised recommendations