Skip to main content
Log in

Variation in liana abundance and biomass along an elevational gradient in the tropical Atlantic Forest (Brazil)

  • Original Article
  • Published:
Ecological Research

Abstract

Lianas play a key role in forest structure, species diversity, as well as functional aspects of tropical forests. Although the study of lianas in the tropics has increased dramatically in recent years, basic information on liana communities for the Brazilian Atlantic Forest is still scarce. To understand general patterns of liana abundance and biomass along an elevational gradient (0–1,100 m asl) of coastal Atlantic Forest, we carried out a standard census for lianas ≥1 cm in five 1-ha plots distributed across different forest sites. On average, we found a twofold variation in liana abundance and biomass between lowland and other forest types. Large lianas (≥10 cm) accounted for 26–35% of total liana biomass at lower elevations, but they were not recorded in montane forests. Although the abundance of lianas displayed strong spatial structure at short distances, the present local forest structure played a minor role structuring liana communities at the scale of 0.01 ha. Compared to similar moist and wet Neotropical forests, lianas are slightly less abundant in the Atlantic Forest, but the total biomass is similar. Our study highlights two important points: (1) despite some studies have shown the importance of small-scale canopy disturbance and support availability, the spatial scale of the relationships between lianas and forest structure can vary greatly among tropical forests; (2) our results add to the evidence that past canopy disturbance levels and minimum temperature variation exert influence on the structure of liana communities in tropical moist forests, particularly along short and steep elevational gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGB:

Aboveground biomass

References

  • Alves LF, Vieira S, Scaranello MA, Camargo PB, Santos FA, Joly CA, Martinelli LA (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 260:679–691. doi:10.1016/j.foreco.2010.05.023

    Article  Google Scholar 

  • Balfour DA, Bond WJ (1993) Factors limiting climber distribution and abundance in a southern African forest. J Ecol 81:93–99

    Article  Google Scholar 

  • Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New York

    Google Scholar 

  • Cai Z, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161:25–33. doi:10.1007/s00442-009-1355-4

    Article  PubMed  Google Scholar 

  • Campanello PI, Gatti MG, Ares A, Montti L, Goldstein G (2007) Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest. For Ecol Manag 252:108–117. doi:10.1016/j.foreco.2007.06.032

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi:10.1007/s00442-005-0100-x

    Article  PubMed  CAS  Google Scholar 

  • Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and hemiepiphytes in a Costa Rican tropical wet forest. J Trop Ecol 6:321–331

    Article  Google Scholar 

  • Clark DB, Clark DA (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag 137:185–198

    Article  Google Scholar 

  • DeWalt SJ, Chave J (2004) Structure and biomass of four lowland Neotropical forests. Biotropica 36:7–19

    Google Scholar 

  • DeWalt SJ, Ickeset K, Nilus R, Harms KE, Burslem DFRP (2006) Liana habitat associations and community structure in a Bornean lowland tropical forest. Plant Ecol 186:203–216. doi:10.1007/s11258-006-9123-6

    Article  Google Scholar 

  • DeWalt SJ, Schnitzer SA, Chave J, Bongers F et al (2010) Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42:309–317. doi:10.1111/j.1744-7429.2009.00589.x

    Article  Google Scholar 

  • DeWalt SJ, Schnitzer SA, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16:1–20

    Article  Google Scholar 

  • Ewers FW (1985) Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull 6:309–317

    Google Scholar 

  • Foster JR, Townsend PA, Zganjar CE (2008) Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sens Environ 112:2104–2117. doi:10.1016/j.rse.2007.07.027

    Article  Google Scholar 

  • Gehring C, Park S, Denich M (2004) Liana allometric biomass equations for Amazonian primary and secondary forest. For Ecol Manag 195:69–83

    Article  Google Scholar 

  • Gentry AH (1991) Distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) Biology of vines. Cambridge University Press, Cambridge, pp 3–49

    Google Scholar 

  • Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of aboveground biomass for an eastern Amazonian forest. J Trop Ecol 16:327–336

    Article  Google Scholar 

  • Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt SJ, Ewango CEN, Foster R, Kenflack D, Martínez-Ramos M, Parren M, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Thomas DW (2006) A standard protocol for lianas censuses. Biotropica 38:256–261. doi:10.1111/j.1744-7429.2006.00134.x

    Article  Google Scholar 

  • Hegarty EE, Caballé G (1991) Distribution and abundance of vines in forest communities. In: Putz FE, Mooney HA (eds) Biology of vines. Cambridge University Press, Cambridge, pp 263–282

    Google Scholar 

  • Henderson A, Galeano G, Bernal B (1995) Field guide to the palms of the Americas. Princeton University Press, New Jersey

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Homeier J, Englert F, Leuschner C, Weigelt P, Unger M (2010) Factors controlling the abundance of lianas along an altitudinal transect of tropical forests in Ecuador. For Ecol Manag 259:1399–1405. doi:10.1016/j.foreco.2010.01.008

    Article  Google Scholar 

  • Hu L, Li M, Li Z (2010) Geographical and environmental gradients of lianas and vines in China. Glob Ecol Biogeogr 19:554–561. doi:10.1111/j.1466-8238.2010.00527.x

    Google Scholar 

  • Ibarra-Manríquez G, Martínez-Ramos M (2002) Landscape variation of liana communities in a Neotropical rain forest. Plant Ecol 160:91–112

    Article  Google Scholar 

  • Ingwell LL, Wright SJ, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98:879–887. doi:10.1111/j.1365-2745.2010.01676.x

    Article  Google Scholar 

  • IPT—Instituto de Pesquisas Tecnológicas (2000) Diagnóstico da situação atual dos recursos hídricos da Unidade de Gerenciamento dos Recursos Hídricos do Litoral Norte—UGRHI-3: Relatório 46172 Governo do Estado de São Paulo

  • Joly CA, Martinelli LA, Alves LF, Vieira SA, Tamashiro JY, Aidar MPM, Camargo PBC, Assis MA, Bernacci LC (2008) As Parcelas Permanentes do Projeto Temático Biota Gradiente Funcional: Composição Florística, Estrutura e Funcionamento da Floresta Ombrófila Densa dos Núcleos Picinguaba e Santa Virgínia do Parque Estadual da Serra do Mar, Estado de São Paulo, Brasil. In: Sanquetta CR (ed) Experiencias de monitoramento no bioma Mata Atlantica com uso de parcelas permanentes. RedeMAP and Funpar, Curitiba, pp 109–148

    Google Scholar 

  • Kazda M, Miladera EJC, Salzer J (2009) Optimisation of spatial allocation patterns in lianas compared to trees used for support. Trees 23:295–304. doi:0.1007/s00468-008-0277-9

    Article  Google Scholar 

  • Korner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Laurance WF, Perez-Salicrup D, Delamonica P, Fearnside PM, D’Angelo S, Jerozolinski A, Pohl L, Lovejoy TE (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105–116

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Article  Google Scholar 

  • Letcher SG, Chazdon RL (2009) Lianas and self-supporting plants during forest succession. For Ecol Manag 257:2150–2156. doi:10.1016/j.foreco.2009.02.028

    Article  Google Scholar 

  • Lima RAF, Moura LC (2008) Gap disturbance regime and composition in the Atlantic Montane Rain Forest: the influence of topography. Plant Ecol 197:239–253. doi:10.1007/s11258-007-9374-x

    Article  Google Scholar 

  • Madeira BG, Espırito-Santo MM, D’Angelo Neto S, Nunes YRF, Sanchez-Azofeifa GA, Fernandes GW, Quesada M (2009) Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol 201:291–304. doi:10.1007/s11258-009-9580-9

    Article  Google Scholar 

  • Malizia A, Grau HR (2006) Liana-host tree associations in a subtropical montane forest of north-western Argentina. J Trop Ecol 22:331–339

    Article  Google Scholar 

  • Malizia A, Grau HR, Lichstein JW (2010) Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. J Veg Sci 21:551–560. doi:10.1111/j.1654-1103.2009.01162.x

    Article  Google Scholar 

  • Martins SC (2010) Caracterização dos solos e serapilheira ao longo do gradiente altitudinal da Mata Atlântica, Estado de São Paulo. Dissertation, Universidade de São Paulo

  • Mascaro J, Schnitzer SA, Carson WP (2004) Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica Forest. Ecol Manag 190:3–14

    Article  Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301

    Article  Google Scholar 

  • Molina-Freaner F, Gamez R, Tinoco-Ojaguren C, Castellanos AE (2004) Vine species diversity across environmental gradients in northwestern Mexico. Biodivers Conserv 13:1853–1874

    Article  Google Scholar 

  • Morellato LPC, Leitao-Filho HF (1996) Reproductive phenology of climbers in a southeasten Brazilian Forest. Biotropica 28:180–191

    Article  Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32:786–792

    Google Scholar 

  • Murray-Smith C, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv Biol 23:151–163. doi:10.1111/j.1523-1739.2008.01075.x

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nabe-Nielsen J (2001) Diversity and distribution of lianas in a Neotropical rain forest, Yasuní National Park, Ecuador. J Trop Ecol 17:1–19

    Article  Google Scholar 

  • Nascimento HEM, Laurance WF (2002) Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. For Ecol Manag 168:311–321

    Article  Google Scholar 

  • Negrelle RRB (2002) The Atlantic Forest in the Volta Velha Reserve: a tropical rain forest site outside the tropics. Biodivers Conserv 11:887–917

    Article  Google Scholar 

  • Nesheim I, Økland RH (2007) Do vine species in Neotropical forest see the forest or the trees? J Veg Sci 18:395–404

    Article  Google Scholar 

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Google Scholar 

  • Parthasarathy N, Muthuramkumar S, Reddy MS (2004) Patterns of liana diversity in tropical evergreen forests of peninsular India. For Ecol Manag 190:15–31

    Article  Google Scholar 

  • Phillips OL, Baker TR (2001) Field manual for plot establishment and remeasurement RAINFOR (Amazon Forest Inventory Network). http://www.geog.leeds.ac.uk/projects/rainfor. Accessed June 2009

  • Phillips OL, Martínez RV, Mendoza AM, Baker TR, Vargas PN (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:1250–1258

    Article  Google Scholar 

  • Phillips OL, Martínez RV, Arroyo L, Baker TR et al (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    Article  PubMed  CAS  Google Scholar 

  • Putz FE (1983) Liana biomass and leaf area of a tierra firme forest in the Rio Negro basin, Venezuela. Biotropica 15:185–189

    Article  Google Scholar 

  • Putz FE (1984) How trees avoid and shed lianas. Biotropica 16:19–23

    Article  Google Scholar 

  • Putz FE, Mooney HE (1991) The biology of vines. Cambridge University Press, Cambridge

    Google Scholar 

  • Putz FE, Chai P (1987) Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. J Ecol 75:523–531

    Article  Google Scholar 

  • Rosenberg MS (2001) PASSAGE pattern analysis, spatial statistics, and geographic exegesis version 11 (Release 34). Department of Biology, Arizona State University, AZ. http://wwwpassagesoftwarenet. Accessed 15 June 2009

  • Runkle JR (1982) Patterns of disturbance in some old-growth mesic forests of North America. Ecology 63:1533–1556

    Article  Google Scholar 

  • Sanchez M (2001) Composição florística e estrutura da comunidade arbórea num gradiente altitudinal da Mata Atlântica. Dissertation, Universidade Estadual de Campinas

  • Sarmiento G, Pinillos M, Garay I (2005) Biomass variability in tropical American lowland rainforests. Ecotropicos 18:1–20

    Google Scholar 

  • Scaranello MAS (2010) Dinamica da comunidade arbórea de Floresta Ombrófila Densa de Terras Baixas e de Restinga no Parque Estadual da Serra do Mar, SP. Thesis, Universidade de São Paulo

  • Schnitzer SA (2005) A mechanistic explanation for the global patterns of liana abundance and distribution. Am Nat 166:262–276

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230

    Article  Google Scholar 

  • Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13:849–857. doi:10.1111/j.1461-0248.2010.01480.x

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666

    Article  Google Scholar 

  • Schnitzer SA, Kuzee ME, Bongers F (2005) Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J Ecol 93:1115–1125

    Article  Google Scholar 

  • Schnitzer SA, Dewalt SJ, Chave J (2006) Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38:581–591. doi:10.1111/j.1744-7429.2006.00187.x

    Article  Google Scholar 

  • Schnitzer SA, Rutishauser S, Aguilar S (2008) Supplemental protocol for liana censuses. For Ecol Manag 255:1044–1049. doi:10.1016/j.foreco.2007.10.012

    Article  Google Scholar 

  • Selaya NG, Anten NPR (2008) Differences in biomass allocation, light interception and mechanical stability between lianas and trees in early secondary tropical forest. Funct Ecol 22:30–39. doi:10.1111/j.1365-2435.2007.01350.x

    Google Scholar 

  • Sentelhas PC, Pereira AR, Marin FR, Angelocci LR, Alfonsi RR, Caramori PF, Swart S (1999) Balanços Hídricos Climatológicos do Brasil—500 balanços hídricos de localidades brasileiras. ESALQ, Piracicaba. http://www.bdclima.cnpm.embrapa.br/index.php. Accessed June 2009

  • Sousa-Neto E, Carmo JB, Keller M, Martins SC, Alves LF, Vieira SA, Piccolo MC, Camargo P, Couto HTZ, Joly CA, Martinelli LA (2011) Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences 8:733–742. doi:10.5194/bg-8-733-2011

    Article  CAS  Google Scholar 

  • Swaine MD, Grace J (2007) Lianas may be favored by low rainfall: evidence from Ghana. Plant Ecol 192:271–276

    Article  Google Scholar 

  • Tabarelli M, Mantovani W (2000) Gap-phase regeneration in a tropical montane forest: the effects of gap structure and bamboo species. Plant Ecol 148:149–155

    Article  Google Scholar 

  • Toledo-Aceves T, Swaine MD (2008) Effects of lianas on tree regeneration in gaps and forest understorey in a tropical forest in Ghana. J Veg Sci 19:717–728. doi:10.3170/2008-8-18444

    Article  Google Scholar 

  • van der Heijden GMF, Phillips OL (2008) What controls liana success in Neotropical forests? Glob Ecol Biogeogr 17:372–383. doi:10.1111/j.1466-8238.2007.00376.x

    Article  Google Scholar 

  • Wright SJ, Calderón O, Hernandéz AS, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484–489

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the field assistance of V.F. Silva, V.A. Kamimura, W.T. Kakuno, O.A. Santos, S. Santos, A.L.C. Rochelle, B.A. Aranha, and E. A. Manzi. We are indebted with Instituto Florestal de São Paulo and Fazenda Capricornio staff for their logistic support during the fieldwork. This research was supported by the State of São Paulo Research Foundation (FAPESP) as part of the Thematic Project Functional Gradient (FAPESP 03/12595-7 to C.A. Joly and L.A. Martinelli), within the BIOTA/FAPESP Program 74—The Biodiversity Virtual Institute (http://www.biota.org.br), by the Brazilian National Research Council (CNPq 476131/2006-5 to M.A. Assis), and by CAPES (scholarship to J. van Melis). COTEC/IF 41.065/2005 and IBAMA/CGEN 093/2005 permit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana F. Alves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 78 kb)

About this article

Cite this article

Alves, L.F., Assis, M.A., van Melis, J. et al. Variation in liana abundance and biomass along an elevational gradient in the tropical Atlantic Forest (Brazil). Ecol Res 27, 323–332 (2012). https://doi.org/10.1007/s11284-011-0902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-011-0902-8

Keywords

Navigation