Skip to main content

Advertisement

Log in

Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We investigated changes in species composition and structure of tree and liana communities along a successional gradient in a seasonally dry tropical forest. There was a progressive increase in tree richness and all tree structural traits from early to late stages, as well as marked changes in tree species composition and dominance. This pattern is probably related to pasture management practices such as ploughing, which remove tree roots and preclude regeneration by resprouting. On the other hand, liana density decreased from intermediate to late stages, showing a negative correlation with tree density. The higher liana abundance in intermediate stage is probably due to a balanced availability of support and light availability, since these variables may show opposite trends during forest growth. Predicted succession models may represent extremes in a continuum of possible successional pathways strongly influenced by land use history, climate, soil type, and by the outcomes of tree–liana interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antunes FZ (1994) Caracterização Climática—Caatinga do Estado de Minas Gerais. Informe Agropec 17:15–19

    Google Scholar 

  • Araújo Neto JC, Aguiar IB, Ferreira VM (2003) Efeito da temperatura e da luz na germinação de sementes de Acacia polyphylla DC. Revta Bras Bot 26:249–256

    Google Scholar 

  • Arroyo Mora JP, Sánchez-Azofeifa GA, Rivard B, Calvo J (2005) Quantifying successional stages of tropical dry forests using Landsat ETM+. Biotropica 37:497–507. doi:10.1111/j.1744-7429.2005.00068.x

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (2006) Ecology: individuals, populations and communities. Blackwell, Oxford

    Google Scholar 

  • Castellanos AE (1991) Photosynthesis and gas exchange of vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 181–202

    Google Scholar 

  • Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol 6:51–71. doi:10.1078/1433-8319-00042

    Article  Google Scholar 

  • Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier F, Cominsky JA (eds) Forest biodiversity research, monitoring and modelling: conceptual background and Old World case studies. Parthenon Publishing, Paris, pp 285–309

    Google Scholar 

  • Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and woody hemiepiphytes in a Costa Rican wet forest. J Trop Ecol 6:321–331

    Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples, version 8.0. Available via http://purl.oclc.org/estimates. Accessed 12 August 2008

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos T R Soc B 345:101–118. doi:10.1098/rstb.1994.0091

    Article  CAS  Google Scholar 

  • Corlett R (1994) What is secondary forest? J Trop Ecol 10:445–447

    Article  Google Scholar 

  • Crawley MJ (2002) Statistical computing: an introduction to data analysis using S-Plus. Wiley, Chichester

    Google Scholar 

  • Denslow JS, Guzman S (2000) Variation in stand structure, light, and seedling abundance across a tropical moist forest chronosequence, Panama. J Veg Sci 11:201–212. doi:10.2307/3236800

    Article  Google Scholar 

  • DeWalt SJ, Schnitzer SA, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16:1–19. doi:10.1017/S0266467400001231

    Article  Google Scholar 

  • Egler FE (1954) Vegetation science concepts I. Initial floristic composition: a factor in old field vegetation development. Vegetatio 4:412–417. doi:10.1007/BF00275587

    Article  Google Scholar 

  • Gentry AH (1995) Diversity and floristic composition of Neotropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 146–194

    Google Scholar 

  • Gentry AH, Dodson C (1987) Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149–156. doi:10.2307/2388737

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manage 148:185–206. doi:10.1016/S0378-1127(00)00535-1

    Article  Google Scholar 

  • Hegarty EE, Caballé G (1991) Distribution and abundance of vines in forest communities. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 313–336

    Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose

    Google Scholar 

  • Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA Jr (1971) Forest environments in tropical life zones: a pilot study. Pergamon Press, New York

    Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228. doi:10.1146/annurev.es.13.110182.001221

    Article  Google Scholar 

  • IEF—Instituto Estadual de Florestas (2000) Parecer técnico para a criação do Parque Estadual da Mata Seca. Instituto Estadual de Florestas, Belo Horizonte

    Google Scholar 

  • Janzen DH (1983) No park is an island: increase in interference from outside as park size decreases. Oikos 41:402–410. doi:10.2307/3544100

    Article  Google Scholar 

  • Janzen DH (1986) Tropical dry forests: the most endangered major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 130–137

    Google Scholar 

  • Janzen DH (1988) Management of habitat fragments in a tropical dry forest: growth. Ann Mo Bot Gard 75:105–116. doi:10.2307/2399468

    Article  Google Scholar 

  • Justiniano MJ, Fredericksen TS (2000) Phenology of tree species in Bolivian dry forests. Biotropica 32:276–281

    Google Scholar 

  • Kalácska M, Sánchez-Azofeifa GA, Calvo-Alvarado JC, Quesada M, Rivard B, Janzen DH (2004) Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. For Ecol Manag 200:227–247

    Article  Google Scholar 

  • Kalácska M, Sánchez-Azofeifa GA, Calvo-Alvarado JC, Rivard B, Quesada M (2005) Effects of season and successional stage on leaf area index and spectral vegetation indices in three Mesoamerican tropical dry forests. Biotropica 37:486–496. doi:10.1111/j.1744-7429.2005.00067.x

    Article  Google Scholar 

  • Kellman MC (1970) Secondary plant succession in tropical montane Mindanao. Australian National University, Department of Biogeography and Geomorphology, Canberra

    Google Scholar 

  • Kennard DK (2002) Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. J Trop Ecol 18:53–66. doi:10.1017/S0266467402002031

    Article  Google Scholar 

  • Kuzee ME, Bongers F (2005) Climber abundance, diversity and colonization in degraded forests of different ages in Côte d’Ivoire. In: Bongers F, Parren MPE, Traoré D (eds) Forest climbers of West Africa: diversity, ecology and management. CABI Publishing, Wallingford, pp 67–84

    Google Scholar 

  • Laurance WF, Pérez-Salicrup D, Delamônica P, Fearnside PM, D’angelo S, Jerozolinski A, Pohl L, Lovejoy TE (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105–116

    Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 2. Plantarum, São Paulo

    Google Scholar 

  • Lugo AE, Gonzalez-Liboy JA, Cintron B, Dugger K (1978) Structure, productivity and transpiration of a subtropical dry forest in Puerto Rico. Biotropica 10:278–291. doi:10.2307/2387680

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science, Malden

    Google Scholar 

  • Miles L, Newton AC, Fries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505. doi:10.1111/j.1365-2699.2005.01424.x

    Article  Google Scholar 

  • Mizrahi A, Ramos-Prado JM, Jimenez-Osorio J (1997) Composition, structure, and management potential of secondary dry tropical vegetation in two abandoned henequen plantations of Yucatan Mexico. For Ecol Manage 96:273–282. doi:10.1016/S0378-1127(97)00008-X

    Article  Google Scholar 

  • Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811–823. doi:10.1111/j.1744-7429.2000.tb00620.x

    Article  Google Scholar 

  • Murphy PG (1995) Dry forests of Central America and the Caribbean. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 9–34

    Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forests. Annu Rev Ecol Syst 17:67–88. doi:10.1146/annurev.es.17.110186.000435

    Article  Google Scholar 

  • Nabe-Nielsen J (2001) Diversity and distribution of lianas in a neotropical rain forest, Yasuní National Park, Ecuador. J Trop Ecol 17:1–19. doi:10.1017/S0266467401001018

    Article  Google Scholar 

  • Oliveira-Filho AT, Curi N, Vilela EV (1998) Effects of canopy gaps, topography, and soils on the distribution of woody species in a central Brazilian deciduous dry forest. Biotropica 30:362–375. doi:10.1111/j.1744-7429.1998.tb00071.x

    Article  Google Scholar 

  • Opler PA, Baker HG, Frankie GF (1977) Recovery of tropical lowland forest ecosystems. In: Cairns J Jr, Dickson KL, Herricks EE (eds) Recovery and restoration of damaged ecosystems. University of Virginia Press, Charlottesville, pp 379–421

    Google Scholar 

  • Pereira IM, Andrade LA, Sampaio EVSB, Barbosa MRV (2003) Use-history effects on structure and flora of caatinga. Biotropica 35:154–165

    Google Scholar 

  • Pérez-Salicrup DR (2001) Effect of liana cutting on tree regeneration in a liana forest in Amazonian Bolivia. Ecology 82:389–396

    Google Scholar 

  • Phillips OL, Martínez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Cerón C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774. doi:10.1038/nature00926

    Article  PubMed  CAS  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134. doi:10.2307/2845499

    Article  Google Scholar 

  • Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:1713–1724. doi:10.2307/1937767

    Article  Google Scholar 

  • Ruiz J, Fandino MC, Chazdon RL (2005) Vegetation structure, composition, and species richness across a 56-year chronosequence of dry tropical forest on Providencia Island, Colombia. Biotropica 37:520–530. doi:10.1111/j.1744-7429.2005.00070.x

    Article  Google Scholar 

  • Sader S, Waide RB, Lawrence WT, Joyce AT (1989) Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data. Remote Sens Environ 28:143–156. doi:10.1016/0034-4257(89)90112-0

    Article  Google Scholar 

  • Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the Upper Rio Negro of Colombia and Venezuela. J Ecol 76:938–958. doi:10.2307/2260625

    Article  Google Scholar 

  • Salis SM, Silva MP, Matos PP, Silva JSV, Potti VJ, Pott A (2004) Fitossociologia de remanescentes de florestas estacionais deciduais em Corumbá, Estado do Mato Grosso do Sul, Brasil. Rev Bras Bot 27:671–684. doi:10.1590/S0100-84042004000400008

    Article  Google Scholar 

  • Sampaio AB, Holl KD, Scariot A (2007) Regeneration of seasonal deciduous forest tree species in long-used pastures in Central Brazil. Biotropica 39:655–659. doi:10.1111/j.1744-7429.2007.00295.x

    Article  Google Scholar 

  • Sánchez-Azofeifa GA, Castro K, Rivard B, Kalascka M, Harriss RC (2003) Remote sensing research priorities in tropical dry forest environments. Biotropica 35:134–142

    Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276. doi:10.1086/431250

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230. doi:10.1016/S0169-5347(02)02491-6

    Article  Google Scholar 

  • Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82:913–919

    Article  Google Scholar 

  • Schnitzer SA, Dalling JW, Carson W (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666. doi:10.1046/j.1365-2745.2000.00489.x

    Article  Google Scholar 

  • Sevilha AC, Scariot A, Noronha SE (2004) Estado atual da representatividade de unidades de conservação em Florestas Estacionais Deciduais no Brasil. In: Sociedade Brasileira de Botânica (org) Biomas florestais. Editora da Universidade Federal de Viçosa, Viçosa, pp 1–63

  • Silva LM, Rodrigues TJD, Aguiar IB (2002) Efeito da luz e da temperatura na germinação de sementes de aroeira (Myracrodruon urundeuva Allemão). Rev Arvore 26:691–697

    Google Scholar 

  • Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86. doi:10.1007/BF00044629

    Article  Google Scholar 

  • Teramura AH, Gold WG, Forseth IN (1991) Physiological ecology of mesic, temperate woody lianas. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 245–285

    Google Scholar 

  • Vieira DLM, Scariot A (2006) Principles of natural regeneration of tropical dry forests for restoration. Restor Ecol 14:11–20. doi:10.1111/j.1526-100X.2006.00100.x

    Article  Google Scholar 

  • Vieira DLM, Sampaio AB, Scariot A, Holl K (2006) Tropical dry forest regeneration from root suckers in Central Brazil. J Trop Ecol 22:1–5. doi:10.1017/S0266467405003135

    Article  Google Scholar 

  • Wright JC, Sánchez-Azofeifa GA, Portillo C, Davies D (2007) Poverty and corruption compromises tropical forest reserves. Ecol Appl 17:1259–1266. doi:10.1890/06-1330.1

    Article  PubMed  Google Scholar 

  • Yodzis P (1986) Competition, mortality and community structure. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, New York, pp 480–491

    Google Scholar 

Download references

Acknowledgements

The authors thank Anna Paola Biadi Bicalho, Elton Bordoni, Rodrigo Braga Nunes, Hisaías Almeida, Mariana Rodrigues Santos, Diego Oliveira Brandão and Gládson Borges for their help during field work. We thank all the staff of the Instituto Estadual de Florestas (IEF) for allowing us to stay and work at the PEMS, and for logistical support. We specially thank José Luís Vieira (IEF) for his invaluable field assistance. We are also very grateful to three anonymous reviewers for their comments on the early versions of this manuscript. This work was carried out with the aid of a grant from the Inter-American Institute for Global Change Research (IAI) CRN II # 021, which is supported by the US National Science Foundation (Grant GEO 0452325), and from the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG CRA 2288/07). Logistical support by the University of Alberta is also acknowledged. Geraldo Wilson Fernandes acknowledges a grant provided by CNPq (304851/2004-3). Bruno Gini Madeira greatly acknowledges a scholarship from CNPq (140250/2004-2). This study was in partial fulfilment for the PhD requirements of Bruno Gini Madeira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário M. Espírito-Santo.

Appendix

Appendix

Table 4 List of tree species (DBH ≥ 5 cm) identified in the 20 plots in three successional stages in the dry forest of the Parque Estadual da Mata Seca, MG

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madeira, B.G., Espírito-Santo, M.M., Neto, S.D. et al. Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol 201, 291–304 (2009). https://doi.org/10.1007/s11258-009-9580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9580-9

Keywords

Navigation