Skip to main content
Log in

Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils

  • Original Article
  • Published:
Ecological Research

Abstract

The responses to precipitation of Haloxylon ammodendron (C.A. Mey.) Bunge (Chenopodiaceae), a small xerophilous tree growing on contrasting textured soils, were evaluated under no, natural, and double precipitation treatments during the entire growing season of 2006. The contrasting textured soils are sandy and heavy textured, and both are the original habitat of H. ammodendron at the south edge of Gubantonggute Desert, Central Asia. Photosynthesis, leaf water potential, transpiration, water use efficiency and leaf biomass production were monitored throughout the growing season. Root distribution of H. ammodendron was evaluated at the end of the experiment. Overall, this small tree did not show significant response to a large summer precipitation pulse or precipitation treatments, in terms of photosynthetic carbon assimilation on either soil. The leaf water potential, transpiration, and water use efficiency appeared to be highly sensitive to a large precipitation pulse and precipitation treatments in sandy soil; and leaf biomass production was also much higher for plants in sandy than that of heavy-textured soil. In sandy soil, defoliation occurred when pre-dawn leaf water potential dropped below −3.0 MPa, while in heavy-textured soil, defoliation occurred when pre-dawn leaf water potential dropped below −3.75 MPa. For similar above-ground parts, the small trees at the sandy site developed much deeper root systems and had nearly double the surface area of feeder roots compared to those at the heavy-textured site. Partially owning to the deeper and larger root system, H. ammodendron growing at coarse-textured site was in better water conditions than those at heavy-textured site under the same climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cheng XL, An SQ, Li B, Chen JQ, Lin GH, Liu YH, Luo YQ, Liu SR (2006) Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecol 184:1–12. doi:10.1007/s11258-005-9047-6

    Article  Google Scholar 

  • Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, Ernest MSK, Sher A, Novoplansky A, Weltzin JF (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253. doi:10.1007/s00442-004-1551-1

    Article  PubMed  Google Scholar 

  • Cohen Y, Li Y (1996) Validating sap flow measurement in field-grown sunflower and corn. J Exp Bot 47:1699–1707

    Article  CAS  Google Scholar 

  • Cohen Y, Fuchs M, Falkenflug V, Moreshet S (1988) Calibrated heat pulse method for determining water uptake in cotton. Agron J 80:398–402

    Google Scholar 

  • Donovan LA, Ehleringer JR (1992) Contrasting water-use patterns among size and life-history classes of a semi-arid shrub. Funct Ecol 6:482–488

    Article  Google Scholar 

  • Donovan LA, Ehleringer JR (1994) Water stress and use of summer precipitation in a Great Basin shrub community. Funct Ecol 8:289–297

    Article  Google Scholar 

  • Dougherty RL, Lauenroth WK, Singh JS (1996) Response of a grassland cactus to frequency and size of rainfall events in a North American shortgrass steppe. J Ecol 84:177–183

    Article  Google Scholar 

  • Dube OP, Pickup G (2001) Effects of rainfall variability and communal and semi-commercial grazing on land cover in southern African rangelands. Clim Res 17:195–208. doi:10.3354/cr017195

    Article  Google Scholar 

  • Ehleringer JR, Schwinning S, Gebauer R (1999) Water use in arid land ecosystems. In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Science, Boston, pp 347–365

    Google Scholar 

  • Fahn A, Cutler DF (1992) Xerophytes. Handbuch der Pflanzenanatomie, Spezieller Teil, Band XIII, Teil 3. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Flanagan LB, Ehleringer JR, Marshall JD (1992) Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant Cell Environ 15:831–836

    Article  Google Scholar 

  • Fravolini A, Hultine KR, Koepke DF, Williams DG (2003) The role of soil texture on mesquite water relations and response to summer precipitation. In: Santa Rita experimental range: 100 years of accomplishment and contributions, conference proceedings, Tucson, Arizona, USA. Proceedings RMRS-P-30, pp 125–129. (USDA Forest Service, Rocky Mountain Research Station: Tucson, AZ, USA)

  • Fravolini A, Hultine KR, Brugnoli E, Gazal R, English NB, Williams DG (2005) Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size. Oecologia 144:618–627. doi:10.1007/s00442-005-0078-4

    Article  PubMed  Google Scholar 

  • Geiger DR, Servaites JC (1991) Carbon allocation and response to stress. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic Press, San Diego, pp 103–127

    Google Scholar 

  • Golluscio RA, Sala OE, Lauenroth WK (1998) Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115:17–25. doi:10.1007/s004420050486

    Article  Google Scholar 

  • Griffith C, Kim E, Donohue K (2004) Life-history variation and adaptation in the historically mobile plant Arabidopsis thaliana (Brassicaceae) in North America. Am J Bot 91:837–849

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schafer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus raeda. Oecologia 124:495–505. doi:10.1007/PL00008875

    Article  Google Scholar 

  • Hamerlynck EP, McAuliffe JR, McDonald EV, Smith SD (2002) Ecological responses of two Mojave Desert shrubs to soil horizon development and soil water dynamics. Ecology 83:768–779. doi:10.1890/0012-9658(2002)083[0768:EROTMD]2.0.CO;2

    Article  Google Scholar 

  • Hamerlynck E, Huxman T, McAuliffe J, Smith S (2004) Carbon isotope discrimination and foliar nutrient status of Larrea tridentata (creosote bush) in contrasting Mojave Desert soils. Oecologia 138:210–215. doi:10.1007/s00442-003-1437-7

    Article  PubMed  Google Scholar 

  • Hennessy JT, Gibbens RP, Tromble JM, Cardenas M (1985) Mesquite (Prosopis glandulosa Torr.) dunes and interdunes in southern New Mexico: a study of soil properties and soil water relations. J Arid Environ 9:27–38

    Google Scholar 

  • Heschel MS, Hausmann NJ (2001) Population differentiation for abscisic acid responsiveness in Impatiens capensis (Balsaminaceae). Int J Plant Sci 162:1253–1260. doi:10.1086/322951

    Article  CAS  Google Scholar 

  • Heschel MS, Sultan SE, Glover S, Sloan D (2004) Population differentiation and plastic responses to drought stress in the generalist annual Polygonum persicaria. Int J Plant Sci 165:817–824. doi:10.1086/421477

    Article  Google Scholar 

  • Huang ZY, Wu H, Hu ZH (1997) The structures of 30 species of psammophytes, and their adaptation to the sandy desert environment in Xinjiang (in Chinese). Acta Phytoecol Sin 21:521–530

    Google Scholar 

  • Huang ZY, Zhang XS, Zheng GH, Gutterman Y (2003) Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. J Arid Environ 55:453–464. doi:10.1016/S0140-1963(02)00294-X

    Article  Google Scholar 

  • Hultine KR, Koepke DF, Pockman WT, Fravolini A, Sperry JS, Williams DG (2006) Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte. Tree Physiol 26:313–323

    Article  CAS  PubMed  Google Scholar 

  • Huxman TE, Cable JM, Ignace DD, Eilts JA, English NB, Weltzin J, Williams DG (2004) Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141:295–305. doi:10.1007/s00442-003-1389-y

    PubMed  Google Scholar 

  • Kripalani RH, Oh JH, Chaudhari HS (2007) Response of the East Asian summer monsoon to doubled atmospheric CO2: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 87:1–28. doi:10.1007/s00704-006-0238-4

    Article  Google Scholar 

  • Larcher W (2003) Water uptake by roots. In: Physiological plant ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer, Berlin Heidelberg New York, pp 225–229

  • Li Y, Xu H, Cohen S (2005) Long-term hydraulic acclimation to soil texture and radiation load in cotton. Plant Cell Environ 28:492–499. doi:10.1111/j.1365-3040.2005.01291.x

    Article  Google Scholar 

  • Loik ME (2007) Sensitivity of water relations and photosynthesis to summer precipitation pulses for Artemisia tridentate and Purshia tridentata. Plant Ecol 191:95–108. doi:10.1007/s11258-006-9217-1

    Article  Google Scholar 

  • McAuligge JR (1994) Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert Bajadas. Ecol Monogr 64:111–148. doi:10.2307/2937038

    Article  Google Scholar 

  • Meinzer FC (2002) Co-ordination of vapor and liquid phase water transport properties in plants. Plant Cell Environ 25:265–274

    Article  PubMed  Google Scholar 

  • Nilsen ET, Orcutt DM (1996) The physiology of plants under stress: soil and biotic factors. Wiley, New York

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Ann Rev Ecol Syst 4:25–51. doi:10.1146/annurev.es.04.110173.000325

    Article  Google Scholar 

  • Philip JR (1957) Evaporation, and moisture and heat fields in the soil. J Atmos Sci 14:354–366. doi:10.1175/1520-0469(1957)014<0354:EAMAHF>2.0.CO;2

    Article  Google Scholar 

  • Phillips SL, Ehleringer JR (1995) Limited uptake of summer precipitation by bigtooth maple (Acer grandidentatum Nutt) and Gambel’s oak (Quereus gambelii Nutt). Trees-Struct Funct 9:214–219. doi:10.1007/BF00195275

    Google Scholar 

  • Pyankov VI, Black CC, Artyusheva EG, Voznesenskaya EV, Ku MSB, Edwards GE (1999) Features of photosynthesis in Haloxylon species of Chenopodiaceae that are dominant plants in central Asian deserts. Plant Cell Physiol 40:125–134

    CAS  Google Scholar 

  • Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynth Res 39:351–368

    Article  CAS  Google Scholar 

  • Sala OE, Lauenroth WK, Golluscio RA (1997) Plant functional types in temperate semi-arid regions. In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types. Cambridge University Press, Cambridge, pp 217–233

    Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant–soil interactions in deserts. Biogeochemistry 42:169–187. doi:10.1023/A:1005939924434

    Article  Google Scholar 

  • Schulze ED (1993) Soil water deficits and atmospheric humidity as environmental signals. In: Smith JAC, Griffiths H (eds) Water deficits: plant response from cell to community. Bios Scientific Publishers, Oxford, pp 129–145

    Google Scholar 

  • Schwinning S, Starr BI, Ehleringer JR (2003) Dominant cold desert plants do not partition warm season precipitation by event size. Oecologia 136:252–260. doi:10.1007/s00442-003-1255-y

    Article  PubMed  Google Scholar 

  • Sperry JS, Hacke UG (2002) Desert shrub water relations with respect to soil characteristics and plant functional type. Funct Ecol 16:367–378. doi:10.1046/j.1365-2435.2002.00628.x

    Article  Google Scholar 

  • Sultan SE, Wilczek AM, Hann SD, Brosi BJ (1998) Contrasting ecological breadth of co-occurring annual Polygonum species. J Ecol 86:363–383. doi:10.1046/j.1365-2745.1998.00265.x

    Article  Google Scholar 

  • van de Griend AA, Owe M (1994) Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions. Water Resour Res 30:181–188

    Article  Google Scholar 

  • Whitford WG (2003) Ecology of desert systems. J Mammal 84:1122–1124. doi:10.1644/1545-1542(2003)084<1122:EODS>2.0.CO;2

    Article  Google Scholar 

  • Wu ZY (1980) Vegetation of China (in Chinese). Science Press, Beijing, pp 1–1144

  • Xu H, Li Y (2006) Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant Soil 285:5–17. doi:10.1007/s11104-005-5108-9

    Article  CAS  Google Scholar 

  • Xu GQ, Li Y (2008) Rooting depth and leaf hydraulic conductance in the xeric shrub Haloxylon ammodendron growing at sites of contrasting soil texture. Funct Plant Biol 35:1234–1242. doi:10.1071/FP08175

    Article  Google Scholar 

  • Xu H, Li Y, Xu GQ, Zou T (2007) Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ 30:399–409. doi:10.1111/j.1365-3040.2006.001626.x

    Article  CAS  PubMed  Google Scholar 

  • Zangerl AR, Bazzaz FA (1984) Effects of short-term selection along environmental gradients on variation in populations of Amaranthus retroflexus and Abutilon theophrasti. Ecology 65:207–217

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the "Knowledge Innovation Project" of the Chinese Academy of Sciences (KZCX2-YW-431) and a grant from the Natural Science Foundation of China (Grant No. 40725002). We thank all the staff at the Fukang Station of Desert Ecology for their indispensable help in the laboratory analysis and field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

About this article

Cite this article

Zou, T., Li, Y., Xu, H. et al. Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils. Ecol Res 25, 185–194 (2010). https://doi.org/10.1007/s11284-009-0642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-009-0642-1

Keywords

Navigation