Skip to main content
Log in

Detecting spatial interactions in the ragweed (Ambrosia artemissifolia L.) and the ragweed beetle (Ophraella communa LeSage) populations

  • Special Feature
  • Spatial statistics in ecology
  • Published:
Ecological Research

Abstract

We observed a weed (Ambrosia artemissifolia)–beetle herbivore (Ophraella communa) system for three years in a spatially continuous field (≈200 ha). We analyzed our field data in the light of two contrasting theories: the resource-concentration hypothesis and reaction–diffusion theory. For the resource-concentration hypothesis, we calculated the correlation coefficients between weed and beetle abundances for every season in each year. Although we found weak support for resource concentration in some seasons, we could not find any clear relationships in other seasons. We discuss a dispersal-based mechanism to explain the differences observed among seasons in lieu of the resource-concentration hypothesis. For the reaction–diffusion theory, we estimated the nonparametric spatial covariance functions for the spatial autocorrelation of weeds and beetles. Although we could not find any strong spatial structure for the individual species, we found evidence of spatial interactions between weeds and beetles using time lagged cross-correlation functions. Weed abundance enhanced local beetle abundance. Through time, there was evidence of beetle spillover to adjacent locations at roughly the one beetle-generation time scale. Sites with large number of beetles did not seem to reduce subsequent weed abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Banks JE (1998) The scale of landscape fragmentation affects herbivore response to vegetation heterogeneity. Oecologia 117:239–246

    Article  Google Scholar 

  • Bascompte J, Solé RV, Martínez N (1997) Population cycles and spatial patterns in snowshoe hares: an individual-oriented simulation. J Theor Biol 187:213–222

    Article  Google Scholar 

  • Bazzaz FA (1974) Ecophysiology of Ambrosia artemisiifolia—successional dominant. Ecology 55:112–119

    Article  Google Scholar 

  • Bjørnstad ON, Bascompte J (2001) Synchrony and second-order spatial correlation in host-parasitoid systems. J Anim Ecol 70:924–933

    Article  Google Scholar 

  • Bjørnstad ON, Bolker B (2000) Canonical functions for dispersal-induced synchrony. Proc R Soc Lond B 267:1787–1794

    Article  Google Scholar 

  • Bjørnstad ON, Falck W (2001) Nonparametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8:53–70

    Article  Google Scholar 

  • Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 14:427–432

    Article  PubMed  Google Scholar 

  • Bjørnstad ON, Peltonen M, Liebhold AM, Baltensweiler W (2002) Waves of larch budmoth outbreaks in the European Alps. Science 298:1020–1023

    Article  PubMed  CAS  Google Scholar 

  • Bolker BM, Pacala SW (1999) Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am Nat 153:575–602

    Article  Google Scholar 

  • Clay SA, Lems GJ, Clay DE, Forcella F, Ellsbury MM, Carlson CG (1999) Sampling weed spatial variability on a fieldwide scale. Weed Sci 47:674–681

    CAS  Google Scholar 

  • Connor EF, Courtney AC, Yoder JM (2000) Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734–748

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley Inc., New York

    Google Scholar 

  • Cromartie WJ Jr (1975) Effect of stand size and vegetational background on colonization of cruciferous plants by herbivorous insects. J Appl Ecol 12:517–533

    Article  Google Scholar 

  • Deen W, Hunt LA (2001) A mechanisitc growth and development model of common ragweed. Weed Sci 49:723–731

    Article  CAS  Google Scholar 

  • Emura K (1999) The ragweed beetle Ophraella communa LeSage (Coleoptera: Chrysomelidae) which injoures harmful exotic plants. Plant Prot 53:138–141

    Google Scholar 

  • Hambäck PA, Englund G (2005) Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecol Lett 8:1057–1065

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2003) Metapopulation theory for fragmented landscapes. Theor Popul Biol 64:119–127

    Article  PubMed  Google Scholar 

  • Harrison S (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42:73–88

    Google Scholar 

  • Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353:255–258

    Article  Google Scholar 

  • Heino M, Kaitala V, Ranta E, Lindström J (1997) Synchronous dynamics and rates of extinction in spatially structured populations. Proc R Soc Lond B 264:481–486

    Article  Google Scholar 

  • Jones RE (1977) Movement patterns and egg distribution in cabbage butterflies. J Anim Ecol 46:195–212

    Article  Google Scholar 

  • Kareiva P (1983) Influence of vegetation texture on herbivore populations: resource concentration and herbivore movement. In: Denno RF, McClure MS (eds) Variable plants and herbivores in natural and managed systems. Academic Press, New York, pp 259–289

    Google Scholar 

  • Keeling MJ, Wilson HB, Pacala SW (2002) Deterministic limits to stochastic spatial models of natural enemies. Am Nat 159:57–80

    Article  PubMed  CAS  Google Scholar 

  • Koenig JA (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26

    Article  PubMed  Google Scholar 

  • LeSage L (1986) A taxonomic monograph of the nearctic galerucine genus Ophraella Wilcox (Coleoptera, Chrysomelidae). Mem Entomol Soc Can (133):3–74

  • Macgarvin M (1982) Species-area relationships of insects on host plants–herbivores on rosebay willowherb. J Anim Ecol 51:207–223

    Article  Google Scholar 

  • Maron JL, Harrison S (1997) Spatial pattern formation in an insect host-parasitoid system. Science 278:1619–1621

    Article  PubMed  CAS  Google Scholar 

  • Moriya S, Shiyake S (2001) Spreading the distribution of an exotic ragweed beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), in Japan. Jpn J Entomol 4:99–102

    Google Scholar 

  • Økland B, Bjørnstad ON (2003) Synchrony and geographical variation of the spruce bark beetle (Ips typographus) during a non-epidemic period. Popul Ecol 45:213–219

    Article  Google Scholar 

  • Otuka A, Yamanaka T (2003) An application for insect field survey using a handheld computer. Agric Info Res 12:113–124

    Google Scholar 

  • Otway SJ, Hector A, Lawton JH (2005) Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J Anim Ecol 74:234–240

    Article  Google Scholar 

  • Palmer WA, Goeden RD (1991) The host range of Ophraella communa Lesage (Coleoptera, Chrysomelidae). Coleopt Bull 45:115–120

    Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Ranta E, Kaitala V, Lindström J, Lindén H (1995) Synchrony in population dynamics. Proc R Soc Lond B 262:113–118

    Article  Google Scholar 

  • Reznik SY, Belokobylskiy SA, Lobanov AL (1994) Weed and herbivorous insect population-densities at the broad spatial scale—Ambrosia artemisiifolia L and Zygogramma suturalis F (Col, Chrysomelidae). J Appl Entomol 118:1–9

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Seabloom EW, Bjørnstad ON, Bolker BM, Reichman OJ (2005) Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands. Ecol Monogr 75:199–214

    Google Scholar 

  • Segrra-Carmona A, Barbosa P (1990) Influence of patch pland density on herbivory levels by Etiella zinckenella (Lepidoptera: Pyralidae) on Glycine max and Crotalaria pallida. Environ Entomol 19:640–647

    Google Scholar 

  • Shimizu T (ed) (2003) Naturalized plants of Japan. Heibonsha, Tokyo

  • Shiyake S, Moriya S (2005) Expansion of Ophraella communa LeSage in east Asia. Insect Nat 40:11–13

    Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Sokal RR, Oden NL (1978) Spatial autocorrelation in biology. 1. Methodology. Biol J Linn Soc 10:199–228

    Google Scholar 

  • Sokal RR, Wartenberg DE (1983) A test of spatial auto-correlation analysis using an isolation-by-distance model. Genetics 105:219–237

    PubMed  Google Scholar 

  • Solé RV, Bascompte J (1997) Emergent phenomena in spatially extended model ecosystems. In: Bascompte J, Solé RV (eds) Modeling spatiotemporal dynamics in ecology. Springer-Verlag, Berlin, pp 1–25

    Google Scholar 

  • Teshler MP, DiTommaso A, Gagnon J, Watson AK (2002) Ambrosia artemissifolia L., common ragweed (Asteraceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CABI Publishing, Wallingford, UK, pp 290–294

    Google Scholar 

  • Thomas CD, Harrison S (1992) Spatial dynamics of a patchily distributed butterfly species. J Anim Ecol 61:437–446

    Article  Google Scholar 

  • Thompson JN (1978) Within-patch structure and dynamics in Pastinaca sativa and resource availability to a specialized herbivore. Ecology 59:443–448

    Article  Google Scholar 

  • Tobin PC, Bjørnstad ON (2003) Spatial dynamics and cross-correlation in a transient predator-prey system. J Anim Ecol 72:460–467

    Article  Google Scholar 

  • Watanabe M (2000) Photoperiodic control of development and reproductive diapause in the leaf beetle Ophraella communa LeSage. Entomol Sci 3:245–253

    Google Scholar 

  • Yamazaki K, Imai C, Natuhara Y (2000) Rapid population growth and food-plant exploitation pattern in an exotic leaf beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), in western Japan. Appl Entomol Zool 35:215–223

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Shibata and M. Tanaka for their assistance with the field observations. Dr. S. Moriya gave us important comments and suggestions before and during the experiments. We appreciate the efforts of Kevin A. Zelnio, a marine biologist and my best friend living in Long Meadow Lane, for his assistance in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Yamanaka.

About this article

Cite this article

Yamanaka, T., Tanaka, K., Otuka, A. et al. Detecting spatial interactions in the ragweed (Ambrosia artemissifolia L.) and the ragweed beetle (Ophraella communa LeSage) populations. Ecol Res 22, 185–196 (2007). https://doi.org/10.1007/s11284-006-0300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-006-0300-9

Keywords

Navigation