Skip to main content
Log in

Coupled ecological and social dynamics in a forested landscape: the deviation of individual decisions from the social optimum

  • Special Feature
  • Theoretical ecology
  • Published:
Ecological Research

Abstract

We present a Markov chain model for land-use dynamics in a forested landscape. This model emphasizes the importance of coupling socioeconomic and ecological processes underlying landscape change. We assume that a forest is composed of many land parcels, each of which is in one of a finite list of land-use states. The land-use state of each land parcel changes stochastically. The transition probability is determined by two processes: the forest succession and the decision of landowners. The landowner tends to choose the land-use state which has a high expected discounted utility, i.e., the sum of the current and the future utilities of the land parcel. Landowners take the likelihood of future landscape changes into account when making decisions. We focus on a three-state model in which forested, agricultural, and abandoned states are considered. The land-use composition at equilibrium was analyzed and compared with the social optimum that maximizes the net benefit of all landowners in a society. We show that when landowners make a myopic choice focused on short-term benefits, their individual decisions tend to push the entire landscape toward an agricultural state even if the forested state represents the highest utility. This land-use composition at equilibrium is very different from the social optimum. A long-term management perspective and an enhanced rate of forest recovery can eliminate the discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–c
Fig. 5

Similar content being viewed by others

References

  • Aide TM, Zimmerman JK, Pascarella JB, Rivera L, Marcano-Vega H (2000) Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restor Ecol 8:328–338

    Article  Google Scholar 

  • Anderies JM, Janssen MA, Walker BH (2002) Grazing management, resilience, and the dynamics of a fire-driven rangeland system. Ecosystems 5:23–44

    Article  Google Scholar 

  • Armsworth PR, Roughgarden JE (2001) An invitation to ecological economics. Trends Ecol Evol 16:229–234

    Article  PubMed  Google Scholar 

  • Baker WL (1989) A review of models of landscape change. Landsc Ecol 2:111–133

    Article  Google Scholar 

  • Batabyal AA (1996) The timing of land development: an invariance result. Am J Agric Econ 78:1092–1097

    Article  Google Scholar 

  • Batabyal AA, Lee DM (2003) Aspects of land use in slash and burn agriculture. Appl Econ Lett 10:821–824

    Article  Google Scholar 

  • Bell KP, Irwin EG (2002) Spatially explicit micro-level modelling of land use change at the rural–urban interface. Am J Agric Econ 27:217–232

    Google Scholar 

  • Berkes F, Folke C (eds) (1998) Linking social and ecological systems. Cambridge University Press, Cambridge

  • Bockstael NE (1996) Modeling economics and ecology: the importance of a spatial perspective. Am J Agric Econ 78:1168–1180

    Article  Google Scholar 

  • Boserup E (1965) The condition of agricultural growth. Allen & Unwin, London

    Google Scholar 

  • Boserup E (1981) Population and technological change. University of Chicago Press, Chicago, Ill.

    Google Scholar 

  • Carpenter S, Brock W, Hanson P (1999) Ecological and social dynamics in simple models in ecosystem management. Conserv Ecol 3:4. [Online] URL: http://www.consecol.org/vol3/iss2/art4/

  • Caswell H, Etter RJ (1992) Ecological interactions in patchy environments: from patch-occupancy models to cellular automata. In: Levin SA, Powell TM, Steele JH (eds) Patch dynamics. Springer, Berlin Heidelberg New York, pp 93–109

    Google Scholar 

  • Chayanov AV (1966) Peasant farm organization. In: Thorner D, Kerblay B, Smith REF (eds) The theory of peasant economy. University of Wisconsin Press, Madison, Wis., pp 21–57

    Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan B Plan Des 24:247–261

    Google Scholar 

  • Crawley MJ, May RM (1987) Population dynamics and plant community structure: competition between annuals and perennials. J Theor Biol 125:475–489

    Google Scholar 

  • Cuarón AD (2000) Effects of land-cover changes on mammals in a neotropical region: a modeling approach. Conserv Biol 14:1676–1692

    Article  Google Scholar 

  • Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking, New York

    Google Scholar 

  • Dieckmann U, Law R, Metz JAJ (2000) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge

    Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    CAS  Google Scholar 

  • Durrett R, Levin S (1994a) Stochastic spatial models: a user’s guide to ecological applications. Philos Trans R Soc Lond B 343:329–350

    Google Scholar 

  • Durrett R, Levin S (1994b) The importance of being discrete (and spatial). Theor Popul Biol 46:363–394

    Article  Google Scholar 

  • Etter RJ, Caswell H (1994) The advantages of dispersal in a patch environment: effects of disturbance in a cellular automata model. In: Eckelbarger KJ, Young CM (eds) Reproduction, larval biology and recruitment in the deep-sea benthos. Columbia University Press, New York, pp 93–109

    Google Scholar 

  • Fehr E, Fischbacher U (2004) Third-party punishment and social norms. Evol Human Behav 25:63–87

    Article  Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications, vol 1, 3rd edn. Wiley, New York

  • Goulder LH, Kennedy D (1997) Valuing ecosystem services: philosophical bases and empirical methods. In: Daily G (ed) Nature’s services. Island Press, Washington, D.C., pp 23–47

    Google Scholar 

  • Grau HR, Aide TM, Zimmerman JK, Thomlinson JR, Helmer E, Zou X (2003) The ecological consequences of socioeconomic and land-use changes in postagriculture Puerto Rico. BioScience 53:1159–1168

    Google Scholar 

  • Grünzweig JM, Sparrow SD, Yakir D, Chapin FS III (2004) Impact of agricultural land-use change on carbon storage in boreal Alaska. Global Change Biol 10:452–472

    Article  Google Scholar 

  • Harada Y, Iwasa Y (1994) Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res Popul Ecol 36:237–249

    Google Scholar 

  • Hassell M, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353:255–258

    Article  Google Scholar 

  • Hassell M, Comins HN, May RM (1994) Species coexistence and self-organizing spatial dynamics. Nature 370:290–292

    Article  Google Scholar 

  • Hastings A (1994) Conservation and spatial structure: theoretical approaches. In: Levin SA (ed) Frontiers in mathematical biology. Springer, Berlin Heidelberg New York, pp 494–503

    Google Scholar 

  • Heal G (2000) Valuing ecosystem services. Ecosystems 3:24–30

    Article  Google Scholar 

  • Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Am Math Soc 40:479–519

    Article  Google Scholar 

  • Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH (2000) Annual fluxes or carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301–304

    Article  PubMed  CAS  Google Scholar 

  • Irwin EG, Bockstael NE (2002) Interacting agents, spatial externalities and the evolution of residential land use patterns. J Econ Geogr 2:31–54

    Article  Google Scholar 

  • Irwin EG, Geoghegan J (2001) Theory, data, methods: developing spatially explicit models of land use change. Agric Ecosys Environ 85:7–23

    Article  Google Scholar 

  • Iwasa Y, Nakamaru M, Levin S (1998) Allelopathy of bacteria in a lattice population: competition between colicin-sensitive and colicin-producing strains. Evol Ecol 12:785–802

    Article  Google Scholar 

  • Kubo T, Iwasa Y, Furumoto N (1996) Forest spatial dynamics with gap expansion: total gap area and gap size distribution. J Theor Biol 180:229–246

    Article  Google Scholar 

  • Lambin EF, Rounsevell MDA, Geist HJ (2000) Are agricultural land-use models able to predict changes in land-use intensity? Agric Ecosyst Environ 82:321–331

    Article  Google Scholar 

  • Lerner AP (1944) The economics of control: principles of welfares. Macmillan, New York

    Google Scholar 

  • Levin SA (1999) Fragile dominion: complexity and commons. Perseus, Reading

    Google Scholar 

  • Levin SA, Grenfell B, Hastings A, Perelson AS (1997) Mathematical and computational challenges in population biology and ecosystems science. Science 275:334–343

    Article  PubMed  CAS  Google Scholar 

  • Lewis SL, Malhi Y, Phillips OL (2004) Fingerprinting the impacts of global change on tropical forests. Philos Trans R Soc Lond B 359:437–462

    Article  CAS  Google Scholar 

  • Lugo AE, Brown S (1993) Management of tropical soils as sinks on sources of atmospheric carbon. Plant Soil 149:27–41

    CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  Google Scholar 

  • Matsui A, Matsuyama K (1995) An approach to equilibrium selection. J Econ Theory 65:415–434

    Article  Google Scholar 

  • McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507

    Article  PubMed  CAS  Google Scholar 

  • McKelvey RD, Palfrey RD (1995) Quantal response equilibrium for normal-form games. Games Econ Behav 10:6–38

    Article  Google Scholar 

  • Mertens B, Lambin EF (1997) Spatial modelling of deforestation in southern Cameroon—spatial disaggregation of diverse deforestation processes. Appl Geogr 17:143–162

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Millennium ecosystem assessment synthesis report. Island Press, Washington, D.C. http://www.maweb.org

  • Moran EF, Brondizio ES (1998) Land-use change after deforestation in Amazonia. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels. National Academic, Washington, D.C., pp 94–119

    Google Scholar 

  • Moran EF, Packer A, Brondizio E, Tucker J (1996) Restoration of vegetation cover in the eastern Amazon. Ecol Econ 18:41–54

    Article  Google Scholar 

  • Müller D, Zeller M (2002) Land use dynamics in the central highlands of Vietnam: a spatial model combining village survey data with satellite imagery interpretation. Agric Econ 27:333–354

    Article  Google Scholar 

  • Nakamaru M, Matsuda H, Iwasa Y (1997) The evolution of cooperation in lattice-structure population. J Theor Biol 184:65–81

    Article  PubMed  CAS  Google Scholar 

  • Oyama D (2002) ρ-dominance and equilibrium selection under perfect foresight dynamics. J Econ Theory 107:288–310

    Article  Google Scholar 

  • Pascarella JB, Aide TM, Serrano MI, Zimmerman JK (2000) Land-use history and forest regeneration in the Cayey mountains, Puerto Rico. Ecosystems 3:217–228

    Article  Google Scholar 

  • Priess JA, de Koning GHJ, Veldkamp A (2001) Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador. Agric Ecosyst Environ 85:269–279

    Article  Google Scholar 

  • Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Global Environ Change 15:23–31

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity–global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Satake A, Kubo T, Iwasa Y (1998) Noise-induced regularity of spatial wave patterns in subalpine P. abies forests. J Theor Biol 195:465–479

    Article  PubMed  Google Scholar 

  • Satake A, Iwasa Y, Hakoyama H, Hubbell SP (2004) Estimating local interaction from spatiotemporal forest data, and Monte Carlo bias correction. J Theor Biol 226:225–235

    Article  PubMed  Google Scholar 

  • Sato K, Iwasa Y (1993) Modeling of wage regeneration (shimagare) in subalpine P. abies forests: population dynamics with spatial structure. Ecology 74:1538–1550

    Article  Google Scholar 

  • Silvertown J, Holtier S, Johnson J, Dale P (1992) Cellular automaton models of interspecific competition of space—the effect of pattern on process. J Ecol 80:527–534

    Article  Google Scholar 

  • Thornton PK, Jones PG (1998) A conceptual approach to dynamic agricultural land-use modeling. Agric Syst 57:505–521

    Article  Google Scholar 

  • von Thünen JH (1966) Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie. Neudruck nach der Ausgabe letzter Hand (1842/1850). Fischer, Stuttgart

  • Tilman D, Karieva P (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Vance C, Geoghegan J (2002) Temporal and spatial modeling of tropical deforestation: a survival analysis linking satellite and household survey data. Agric Econ 27:317–332

    Article  Google Scholar 

  • Waldhardt R, Simmering D, Otte A (2004) Estimation and prediction of plant species richness in a mosaic landscape. Landsc Ecol 19:211–226

    Article  Google Scholar 

  • Walker BH, Carpenter S, Anderies J, Abel N, Cumming G, Janssen M, Lebel L, Norberg J, Peterson GD, Pritchard R (2002) Resilience management in social-ecological systems: a working hypothesis for participatory approach. Conserv Ecol 6:14. [Online] URL: http://www.consecol.org/vol6/iss1/art14

    Google Scholar 

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environ Plan A 25:1175–1199

    Google Scholar 

  • White R, Engelen G, Uljee I (1997) The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environ Plan B Plan Des 24:323–343

    Google Scholar 

  • Wiens JA, Stenseth NC, van Horne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by a fellowship and a grant-in-aid from the Japan Society for the Promotion of Science to A. S. and another to Y. I. We thank the following for their helpful comments: K. Akao, N. Agetsuma, M. A. Janssen, K. Kitayama, H. M. Leslie, S. A. Levin, H. Ohtsuki, M. Potts, T. K. Rudel, M. Schlueter, J. Vincent, and H. Yokomizo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Satake.

Appendix

Appendix

The expected discounted utility V and the transition matrix P are dependent on each other (Fig. 1)—the transition rate r ij is a function of V i and V j (Eq. 2 in the text); V i and V j in turn depend on P (Eq. 3 in the text); but elements of P includes r ij . We explain a method of recursive calculation that is performed to cope with the interdependence between V and P. Let P[V] be the transition matrix given the expected discounted utility V. We started with a simple set of the expected discounted utility, such as V (0)=u in which there is no contribution of future utility. We then calculated the transition matrix P (0)=P[V (0) ]. Given P (0), we obtained a set of the expected discounted utility \( {\mathbf{V}}^{{(1)}} = {\sum\nolimits_{n = 0}^\infty {\omega ^{n} ({\mathbf{P}}^{{(0)}} )^{n} {\mathbf{u}}} } \) (see Eq. 3 in the text). As a next step, using V (1), we calculated P (1)=P[V (1) ], and then obtained \( {\mathbf{V}}^{{(2)}} = {\sum\nolimits_{n = 0}^\infty {\omega ^{n} ({\mathbf{P}}^{{(1)}} )^{n} } }{\mathbf{u}}. \) We repeated this procedure, and when a series of V (1), V (2), ... , V (n) converges (i.e., V (n)=V (n - 1)), V and P satisfy both Eqs. 2 and 3 in the text.

About this article

Cite this article

Satake, A., Iwasa, Y. Coupled ecological and social dynamics in a forested landscape: the deviation of individual decisions from the social optimum. Ecol Res 21, 370–379 (2006). https://doi.org/10.1007/s11284-006-0167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-006-0167-9

Keywords

Navigation