Skip to main content

Advertisement

Log in

Association of cortical shape of the mandible on panoramic radiographs with mandibular trabecular bone structure in Japanese adults: a cone-beam CT-image analysis

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

An Erratum to this article was published on 11 December 2013

Abstract

Objectives

The purpose of this study was to assess the association between the cortical shape of the mandible, as detected on panoramic radiographs, and trabecular bone structure, as assessed by cone-beam computed tomography (CBCT), in Japanese adults.

Methods

Panoramic radiographs and CBCT images of the mandibles of 50 subjects (18 men, 32 women), aged 45–86 years, were evaluated. An experienced oral and maxillofacial radiologist categorized the cortical shape of the mandible as detected on panoramic radiographs as normal, mildly to moderately eroded, and severely eroded cortices, respectively. All mandibles were scanned using CBCT. Four bone structure parameters of the basal portion of the mandible were calculated in three dimensions using an image-analysis system: total bone volume (mm3); cortical bone volume fraction (%); trabecular bone volume fraction (%); fractal dimension. One-way analysis of covariance with Bonferroni correction was employed to evaluate differences in the four bone parameters among the three cortical shape groups. Pearson’s correlation coefficient was calculated to examine correlations between age and cortical and trabecular bone volume fractions.

Results

Progression of cortical bone erosion was significantly associated with increased trabecular bone volume fraction (P < 0.001) and increased fractal dimension (P = 0.01). Cortical bone volume fraction decreased significantly with age (P = 0.04). However, trabecular bone volume fraction tended to increase with age (P = 0.06).

Conclusions

The change in the trabecular bone structure of the mandible may differ from that of the general skeleton in Japanese adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orimo H, Yaegashi Y, Onoda T, Fukushima Y, Hosoi T, Sakata K. Hip fracture incidence in Japan: estimates of new patients in 2007 and 20-year trends. Arch Osteoporos. 2009;4:71–7.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, et al. Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on osteoarthritis/osteoporosis against disability study. J Bone Miner Metab. 2009;27:620–8.

    Article  PubMed  Google Scholar 

  3. Iki M. Epidemiology of osteoporosis in Japan. Clin Calcium. 2012;22:797–803 (in Japanese).

    PubMed  Google Scholar 

  4. National Institute of Health. Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement. 2000;17:1–45.

    Google Scholar 

  5. Hawker G, Mendel A, Lam MA, Akhavan PS, Cancino-Romero J, Waugh E, et al. A clinical decision rule to enhance targeted bone mineral density testing in healthy mid-life women. Osteoporos Int. 2012;23:1931–8.

    Article  PubMed  Google Scholar 

  6. Taguchi A. Triage screening for osteoporosis in dental clinics using panoramic radiographs. Oral Dis. 2010;16:316–27.

    Article  PubMed  Google Scholar 

  7. Taguchi A, Ohtsuka M, Nakamoto T, Naito K, Tsuda M, Kudo Y, et al. Identification of post-menopausal women at risk of osteoporosis by trained general dental practitioners using panoramic radiographs. Dentomaxillofac Radiol. 2007;36:149–54.

    Article  PubMed  Google Scholar 

  8. Pacifici R, Rupich RC, Avioli LV. Vertebral cortical bone mass measurement by a new quantitative computer tomography method: correlations with vertebral trabecular bone measurements. Calcif Tissue Int. 1990;47:215–20.

    Article  PubMed  Google Scholar 

  9. Lee RL, Dacre JE, James MF. Image processing assessment of femoral osteopenia. J Digit Imaging. 1997;10:218–21.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Le Corroller T, Halgrin J, Pithioux M, Guenoun D, Chabrand P, Champsaur P. Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs. Osteoporos Int. 2012;23:163–9.

    Article  PubMed  Google Scholar 

  11. Lindh C, Horner K, Jonasson G, Olsson P, Rohlin M, Jacobs R, et al. The use of visual assessment of dental radiographs for identifying women at risk of having osteoporosis: the OSTEODENT project. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:285–93.

    Article  PubMed  Google Scholar 

  12. Jonasson G, Sundh V, Ahlqwist M, Hakeberg M, Björkelund C, Lissner L. A prospective study of mandibular trabecular bone to predict fracture incidence in women: a low-cost screening tool in the dental clinic. Bone. 2011;49:873–9.

    Article  PubMed  Google Scholar 

  13. Klemetti E, Vainio P, Lassila V, Alhava E. Trabecular bone mineral density of mandible and alveolar height in postmenopausal women. Scand J Dent Res. 1993;101:166–70.

    PubMed  Google Scholar 

  14. Taguchi A, Tanimoto K, Suei Y, Ohama K, Wada T. Relationship between the mandibular and lumbar vertebral bone mineral density at different postmenopausal stages. Dentomaxillofac Radiol. 1996;25:130–5.

    PubMed  Google Scholar 

  15. White SC, Taguchi A, Kao D, Wu S, Service SK, Yoon D, et al. Clinical and panoramic predictors of femur bone mineral density. Osteoporos Int. 2005;16:339–46.

    Article  PubMed  Google Scholar 

  16. Lindh C, Nilsson M, Klinge B, Petersson A. Quantitative computed tomography of trabecular bone in the mandible. Dentomaxillofac Radiol. 1996;25:146–50.

    PubMed  Google Scholar 

  17. Klemetti E, Kolmakov S, Kröger H. Pantomography in assessment of the osteoporosis risk group. Scand J Dent Res. 1994;102:68–72.

    PubMed  Google Scholar 

  18. Taguchi A, Ohtsuka M, Nakamoto T, Suei Y, Kudo Y, Tanimoto K, et al. Detection of post-menopausal women with low bone mineral density and elevated biochemical markers of bone turnover by panoramic radiographs. Dentomaxillofac Radiol. 2008;37:433–7.

    Article  PubMed  Google Scholar 

  19. Fazzalari NL, Parkinson IH. Fractal dimension and architecture of trabecular bone. J Pathol. 1996;178:100–5.

    Article  PubMed  Google Scholar 

  20. Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES, Osteoporotic Fractures in Men (MrOS) Research Group. Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res. 2006;21:1197–206.

    Article  PubMed  Google Scholar 

  21. Holzer G, von Skrbensky G, Holzer LA, Pichl W. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res. 2009;24:468–74.

    Article  PubMed  Google Scholar 

  22. Chen H, Zhou X, Shoumura S, Emura S, Bunai Y. Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int. 2010;21:627–36.

    Article  PubMed  Google Scholar 

  23. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, et al. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1997;12:111–8.

    Article  PubMed  Google Scholar 

  24. Taguchi A, Sanada M, Krall E, Nakamoto T, Ohtsuka M, Suei Y, et al. Relationship between dental panoramic radiographic findings and biochemical markers of bone turnover. J Bone Miner Res. 2003;18:1689–94.

    Article  PubMed  Google Scholar 

  25. Horner K, Devlin H, Alsop CW, Hodgkinson IM, Adams JE. Mandibular bone mineral density as a predictor of skeletal osteoporosis. Br J Radiol. 1996;69:1019–25.

    Article  PubMed  Google Scholar 

  26. Drozdzowska B, Pluskiewicz W. Longitudinal changes in mandibular bone mineral density compared with hip bone mineral density and quantitative ultrasound at calcaneus and hand phalanges. Br J Radiol. 2002;75:743–7.

    PubMed  Google Scholar 

  27. Cakur B, Dagistan S, Sahin A, Harorli A, Yilmaz A. Reliability of mandibular cortical index and mandibular bone mineral density in the detection of osteoporotic women. Dentomaxillofac Radiol. 2009;38:255–61.

    Article  PubMed  Google Scholar 

  28. Jonasson G. Bone mass and trabecular pattern in the mandible as an indicator of skeletal osteopenia: a 10-year follow-up study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:284–91.

    Article  PubMed  Google Scholar 

  29. Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T, et al. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res. 2005;20:1828–36.

    Article  PubMed  Google Scholar 

  30. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013. doi:10.1155/2013/213234.

    Google Scholar 

  31. Won SY, Kim SH, Kim ST, Paik DJ, Song WC, Koh KS, et al. Trabecular bone ratio of mandible using micro-computed tomography in Korean. J Craniofac Surg. 2010;21:920–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by Grants-in-Aid from the Japan Society for the Promotion of Science (Nos. 23593074 and 24592849).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Taguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochizuki, N., Sugino, N., Ninomiya, T. et al. Association of cortical shape of the mandible on panoramic radiographs with mandibular trabecular bone structure in Japanese adults: a cone-beam CT-image analysis. Oral Radiol 30, 160–167 (2014). https://doi.org/10.1007/s11282-013-0155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-013-0155-z

Keywords

Navigation