Skip to main content
Log in

Secret DMT Analysis for a Multiuser MIMO Fading Channel

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In wireless communications, eavesdropping is a threat due to the broadcast nature of the channel. Therefore, in addition to the rate and the error probability, the secrecy level should be considered in design and analysis of a system. In this study, by the error probability and the channel outage analysis, we derive the secret diversity-multiplexing tradeoff (DMT) for a multiuser multiple-input multiple-output (MIMO) fading channel. We consider two multiuser schemes, multiple-access channel and user-selection. Secret DMT characterizes the relation of the error probability, the secrecy and the rate of the system at high signal-to-noise ratio (SNR). We quantify how the number of users and antennas at all the nodes affects the secret DMT performance of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Dat availability

No data used for the work.

References

  1. Shi, W., et al. (2021). Physical layer security techniques for future wireless networks. arXiv:2112.14469

  2. Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2019). Classifications and applications of physical layer security techniques for confidentiality, a comprehensive survey. IEEE Communications Surveys & Tutorials, 21(2), 1773–1828.

    Article  Google Scholar 

  3. Liu, Y., Chen, H.-H., & Wang, L. (2017). Physical layer security for next generation wireless networks: Theories, technologies, and challenges. IEEE Communications Surveys & Tutorials, 19(1), 347–376.

    Article  Google Scholar 

  4. Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  Google Scholar 

  5. Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.

    Article  MathSciNet  Google Scholar 

  6. Tekin, E., & Yener, A. (2008). The Gaussian multiple access wire-tap channel. IEEE Transactions on Information Theory, 54(12), 5747–5755.

    Article  MathSciNet  Google Scholar 

  7. Shafiee, S., Liu, N., & Ulukus, S. (2009). Towards the secrecy capacity of the Gaussian MIMO wire-tap channel: The 2-2-1 channel. IEEE Transactions on Information Theory, 55(9), 4033–4039.

    Article  MathSciNet  Google Scholar 

  8. Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas-II: The MIMOME wiretap channel. IEEE Transactions on Information Theory, 56(11), 5515–5532.

    Article  MathSciNet  Google Scholar 

  9. Ragheb, M., Kuhestani, A., Kazemi, M., Ahmadi, H., & Hanzo, L. (2024). RIS-aided secure millimeter-wave communication under RF-chain impairments. IEEE Transactions on Vehicular Technology, 73(1), 952–963.

    Article  Google Scholar 

  10. Forouzesh, M., Samsami Khodadad, F., Azmi, P., Kuhestani, A., & Ahmadi, H. (2023). Simultaneous secure and covert transmissions against two attacks under practical assumptions. IEEE Internet of Things Journal, 10(12), 10160–10171.

    Article  Google Scholar 

  11. Gopala, P. K., Lai, L., & Gamal, H. E. (2008). On the secrecy of capacity of fading channels. IEEE Transactions on Information Theory, 54(10), 4687–4698.

    Article  MathSciNet  Google Scholar 

  12. Liang, Y., Poor, H. V., & Shamai, S. (2008). Secure communication over fading channels. IEEE Transactions on Information Theory, 54(6), 2470–2492.

    Article  MathSciNet  Google Scholar 

  13. Allen, T., Tajer, A., & Al-Dhahir, N. (2017). Secure alamouti MAC transmissions. IEEE Transactions on Wireless Communications, 16(6), 3674–3687.

    Article  Google Scholar 

  14. Mobini, Z. (2020). Secrecy performance of non-orthogonal multiple access cognitive untrusted relaying with friendly jamming. AEU International Journal of Electronics and Communications, 118, 153–156.

    Article  Google Scholar 

  15. Salem, A., Musavian, L., Jorswieck, E. A., & Aïssa, S. (2020). Secrecy outage probability of energy-harvesting cooperative NOMA transmissions with relay selection. IEEE Transactions on Green Communications and Networking, 4(4), 1130–1148.

    Article  Google Scholar 

  16. Li, M., Yin, H., Huang, Y., Wang, Y., & Yu, R. (2019). The security of cognitive multiuser networks over space-and-time correlated channels. IEEE Systems Journal, 13(3), 2806–2817.

    Article  Google Scholar 

  17. Son, W., Nam, H., Shin, W.-Y., & Jung, B. C. (2021). Secrecy outage analysis of multiuser downlink wiretap networks with potential eavesdroppers. IEEE Systems Journal, 15(2), 3093–3096.

    Article  Google Scholar 

  18. Namadchi, F., Ghanami, F., & Hodtani, G. A. (2020). On the secrecy rate region and outage probability of secondary wiretap multiple access channel over dissimilar Rayleigh/Nakagami fading. Physical Communication, 41, 101117.

    Article  Google Scholar 

  19. Choi, J., Joung, J., & Jung, B. C. (2021). Space–time line code for enhancing physical layer security of multiuser MIMO uplink transmission. IEEE Systems Journal, 15(3), 3336–3347.

    Article  Google Scholar 

  20. Kuhestani, A., Mohammadi, A., & Yeoh, P. L. (2018). Security-reliability trade-off in cyber-physical cooperative systems with non-ideal untrusted relaying. In IEEE 4th world forum on Internet of Things (WF-IoT) (pp. 552–557).

  21. Yuksel, M., & Erkip, E. (2011). Diversity-Multiplexing tradeoff for the multiple-antenna wire-tap channel. IEEE Transactions on Wireless Communications, 10(3), 762–771.

    Article  Google Scholar 

  22. Tekin, E., Serbetli, S., & Yener, A. (2005). On secure signaling for the Gaussian multiple access wire-tap channel. In Proceedings of 39th Asilomar conference on signals, systems and computers (pp. 1747–1751).

  23. Tse, D. N. C., Viswanath, P., & Zheng, L. (2004). Diversity-multiplexing tradeoff in multiple-access channels. IEEE Transactions on Information Theory, 50(9), 1859–1874.

    Article  MathSciNet  Google Scholar 

  24. Li, B., Zou, Y., Zhou, J., Wang, F., Cao, W., & Yao, Y.-D. (2019). Secrecy outage probability analysis of friendly jammer selection aided multiuser scheduling for wireless networks. IEEE Transactions on Communications, 67(5), 3482–3495.

    Article  Google Scholar 

  25. Zou, Y., & Zhu, J. (2016). Intercept probability analysis of joint user-jammer selection against eavesdropping. In IEEE global communications conference (GLOBECOM) (pp. 1–6).

  26. Tang, T. -w., Tien, H. -t., & Lu, H. -f. (2014). Coding schemes with constant sphere-decoding complexity and high DMT performance for MIMO multiple access channels with low-rate feedback. In IEEE international symposium on information theory (pp. 1902–1906).

  27. Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  Google Scholar 

  28. Roostaei, A., & Derakhtian, M. (2017). Diversity-multiplexing tradeoff in an interweave multiuser cognitive radio system. IEEE Transactions on Wireless Communications, 16(1), 389–399.

    Article  Google Scholar 

  29. Narasimhan, R. (2006). Finite SNR diversity multiplexing tradeoff for correlated Rayleigh and Rician MIMO channels. IEEE Transactions on Information Theory, 52(9), 3965–3979.

    Article  MathSciNet  Google Scholar 

  30. Chang, W., Chung, S. -y., & Lee, Y. H. (2006). Diversity-multiplexing tradeoff in rank-deficient and spatially correlated MIMO channels. In IEEE international symposium on information theory, Seattle, WA, USA (pp. 1144–1148).

  31. Rezki, Z., Haccoun, D., Gagnon, F., & Ajib, W. (2008). Impact of spatial correlation on the finite-SNR diversity-multiplexing tradeoff. IEEE Transactions on Wireless Communications, 7(4), 1184–1189.

    Article  Google Scholar 

  32. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.

    Google Scholar 

  33. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10, 585–595.

    Article  MathSciNet  Google Scholar 

  34. David, H., & Nagaraja, H. (2003). Order statistics (3rd ed.). New York: Wiley.

    Book  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mostafa Derakhtian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 1

As the error probability is lower bounded by the secrecy outage, it is sufficient to derive the lower bound of the secrecy outage probability at high SNR and get rid of the complexity of exact analysis. First, by the relation of eigenvalues and mutual information of MIMO systems [27], (21) can be written as

$$\begin{aligned} \Pr \left( {\mathcal {O}}^{{\mathcal {S}}}_{s} \right) \doteq \Pr \left( \frac{\Pi _{i=1}^{M}(1+{{\lambda }_{i}}\text {SNR})}{\Pi _{i=1}^{L}(1+{{\mu }_{1,i}}\text {SNR})\ldots \Pi _{i=1}^{L}(1+{{\mu }_{\left| {\mathcal {S}} \right| ,i}}\text {SNR})} <{\text {SNR}^{\left| {\mathcal {S}} \right| {{r}_{s}}}} \right) , \end{aligned}$$
(A1)

where \(M=\min {\{\left| {\mathcal {S}} \right| n_t,n_r\}}\), \(L=\min {\{n_t,n_e\}}\), \(0\le \lambda _1 \le \cdots \le \lambda _M\) and \(0\le \mu _{k,1} \le \cdots \le \mu _{k,L}, k=1,\ldots ,\left| {\mathcal {S}} \right|\) are the ordered eigenvalues of \({{\textbf{H}}}_{{\mathcal {S}}}{\textbf{H}}_{{{\mathcal {S}}}}^{\dag }\) and \({{\textbf{G}}}_{k} {\textbf{G}}_{k}^{\dag }\), respectively. We can simplify the denominator at high SNR. First, define the event \(E=\left\{ \mu _{k,i}>c| k=1,\ldots ,\left| {\mathcal {S}} \right| , i=1,\ldots ,L \right\}\), where \(c>1\) is a constant parameter and the complement of E is denoted by \({\bar{E}}\). We can write

$$\begin{aligned} \Pr \left( {\mathcal {O}}^{{\mathcal {S}}}_{s} \right)&= \Pr ({\mathcal {O}}^{{\mathcal {S}}}_{s}|{ E})\Pr ({E })+\Pr ({\mathcal {O}}^{{\mathcal {S}}}_{s}|{\bar{E}})\Pr ({\bar{E}}) \\&\ge \Pr ({\mathcal {O}}^{{\mathcal {S}}}_{s}|{ E)}\Pr ({E )} \\&\,{\dot{\ge }} \Pr ({\mathcal {O}}^{{\mathcal {S}}}_{s}|{ E)}. \end{aligned}$$
(A2)

The last term is because \(\Pr ({E )}\) is constant with respect to SNR at high SNR regime analysis. Then, we can write

$$\begin{aligned} \Pr ({\mathcal {O}}^{{\mathcal {S}}}_{s}|{ E)}&\,{{{\dot{\ge }} }}\Pr \left( \frac{\Pi _{i=1}^{M}(1+{{\lambda }_{i}}\text {SNR})}{{{\left( 1+c\,\text {SNR} \right) }^{L}}\ldots {{\left( 1+c\,\text {SNR} \right) }^{L}}}<{{\text {SNR}}^{\left| {\mathcal {S}} \right| {{r}_{s}}}} \right) \end{aligned}$$
(A3a)
$$\begin{aligned}&\,{{{\dot{\ge }} }}\,\Pr \left( \frac{\Pi _{i=1}^{M}(1+{{\lambda }_{i}}\text {SNR})}{{{\text {SNR}}^{L}}\ldots {{\text {SNR}}^{^{L}}}}<{{\text {SNR}}^{\left| {\mathcal {S}} \right| {{r}_{s}}}} \right) \end{aligned}$$
(A3b)
$$\begin{aligned}&\,{{{\dot{\ge }} }}\,\Pr \left( \Pi _{i=1}^{M}(1+{{\lambda }_{i}}\text {SNR})<{{\text {SNR}}^{\left| {\mathcal {S}} \right| ({{r}_{s}}+L)}} \right) \end{aligned}$$
(A3c)
$$\begin{aligned}&\,\,{{\doteq }}\text {SNR}^ {-d_{\left| {\mathcal {S}} \right| n_t,{{n}_{r}}}(\left| {\mathcal {S}} \right| ({{r}_{s}}+L))} \end{aligned}$$
(A3d)
$$\begin{aligned}&\,{{\doteq }}\left\{ \begin{array}{ll} {\text {SNR}^{{-d_{\left| {\mathcal {S}} \right| (n_t-n_e),{{n}_{r}-\left| {\mathcal {S}} \right| n_e}}(\left| {\mathcal {S}} \right| {{r}_{s}})}}},\,\,n_e < \min (n_t,n_r),\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\, n_r > Kn_e, \\ \,\,\,\,\,\,\,\,\,\,\\ 1,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text {O.W.},\\ \end{array} \right. \end{aligned}$$
(A3e)

where the term (A3a) has been derived by substituting the minimum of all \(\mu _{k,i}\)s and (A3b) follows because \((1+c\,\text {SNR})>\text {SNR}\). Expression (A3c) is similar to the outage probability of a MAC system but with the difference that the multiplexing gain has been shifted by the value L which demonstrates the effect of the eavesdropper. Hence, we can apply the analysis of the MIMO system without secrecy [27] to (A3c) which leads to (A3d) and (A3e). According to (16), we can finally conclude

$$\begin{aligned} \Pr (\text {secrecy outage)}&{{{\dot{\ge }} }}\left\{ \begin{array}{ll} {\text {SNR}^{\underset{{\mathcal {S}}}{\mathop {-\min }}{\,d_{\left| {\mathcal {S}} \right| (n_t-n_e),{{n}_{r}-\left| {\mathcal {S}} \right| n_e}}(\left| {\mathcal {S}} \right| {{r}_{s}})}}},\,\,n_e < \min (n_t,n_r),\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, ,\, n_r > Kn_e, \\ \,\,\,\,\,\,\,\,\,\,\\ 1, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text {O.W.}.\\ \end{array} \right. \end{aligned}$$
(A4)

Thus, Lemma 1 is proved.

Appendix B: Proof of Lemma 2

According to the individual secrecy criterion that we discussed in Sect. 2, even if one user can not achieve secrecy, the system is not secure. Therefore, the probability that secrecy is not achieved can be derived as:

$$\begin{aligned} \Pr (\text {secrecy not achieved}) \triangleq \Pr \left( \underset{N \rightarrow +\infty }{\mathop {\lim }}\, \bigcup \limits _{k\in {\mathcal {K}}} \frac{1}{N}H\left( {{W}_{k}}|{{X}_{{{{\mathcal {K}}_{k}}}}},{{Y}_{e}} \right) <{{R}_s} \right) , \end{aligned}$$
(B5)

where N is the number of channel uses and long enough. To analyze this probability, due to union bound, we can write

$$\begin{aligned} \Pr (\text {secrecy not achieved}) \le \Pr \left( \underset{N \rightarrow +\infty }{\mathop {\lim }}\,\frac{1}{N}\sum \limits _{k=1}^{K}H\left( {{W}_{k}}|{{X}_{{{{\mathcal {K}}_{k}}}}},{{Y}_{e}} \right) <{{R}_s} \right) . \end{aligned}$$
(B6)

On the other hand, we have

$$\begin{aligned} H\left( {{W}_{k}}|{{X}_{{{{\mathcal {K}}_{k}}}}},{{Y}_{e}} \right)&=H\left( {{W}_{k}}|{{X}_{{{{\mathcal {K}}_{k}}}}} \right) -I\left( {{W}_{k}};{{Y}_{e}}|{{X}_{{{{\mathcal {K}}_{k}}}}} \right) \\&\ge H\left( {{W}_{k}} \right) -I\left( {{X}_{k}};{{Y}_{e}}|{{X}_{{{{\mathcal {K}}_{k}}}}} \right) , \end{aligned}$$
(B7)

where \(H\left( {{W}_{k}}|{{X}_{{{{\mathcal {K}}_{k}}}}} \right) = H\left( {{W}_{k}} \right)\) is due to the independency of \(W_k\) and \({X}_{{{{\mathcal {K}}_{k}}}}\) and \(I\left( {{X}_{k}};{{Y}_{e}}|{{X}_{{{{\mathcal {K}}_{k}}}}} \right) \ge I\left( {{W}_{k}};{{Y}_{e}}|{{X}_{{{{\mathcal {K}}_{k}}}}} \right)\) is due to the data processing inequality [32]. Hence, we can express

$$\begin{aligned}&\Pr \left( \underset{N \rightarrow +\infty }{\mathop {\lim }}\frac{1}{N}H\left( {{W}_{k}}|{{X}_{{{{\mathcal {K}}_{k}}}}},{{Y}_{e}} \right)<{{R}_s} \right) \\&\quad \le \Pr \left( \underset{N \rightarrow +\infty }{\mathop {\lim }} \frac{1}{N}\left( H\left( {{W}_{k}} \right) -I\left( {{X}_{k}};{{Y}_{e}}|{{X}_{{{{\mathcal {K}}_{k}}}}} \right) \right)<{{R}_s}\right) \\&\quad \le \Pr \left( R-{{C}_{e}}<R-\min ({{n}_{t}},{{n}_{e}})\log \text {SNR} \right) \\&\quad \le \Pr \left( {{C}_{e}}>\min ({{n}_{t}},{{n}_{e}})\log \text {SNR} \right) \\&\quad \doteq 0 , \end{aligned}$$
(B8)

where \(R= \frac{1}{N} H\left( {{W}_{k}} \right)\) is the rate of each user, \(C_e=\frac{1}{N}I\left( {{X}_{k}};{{Y}_{e}}|{{X}_{{{{{\mathcal {K}}_{k}}}}}} \right)\), the capacity of the Eve’s channel follows [22] and \(R_{s}=R-\min ({{n}_{t}},{{n}_{e}})\log \text {SNR}\) follows Sect. 3.2. The final result is due to [33], as the maximum degrees of freedom between the source and the eavesdropper is \(\min ({{n}_{t}},{{n}_{e}})\). As, the result of (B8) is true \(\forall k\in {\mathcal {K}}\), due to (B6), \(\Pr (\text {secrecy not achieved})=0\) and therefore, Lemma 2 is proved.

Appendix C: Proof of Lemma 3

To analyze the lower bound of the secrecy outage probability of user-selection, taking the same method as “Appendix A”, \({\log \left( \det \left( {{{\textbf{I}}}_{{n_e}}}+\text {SNR}{{\textbf{G}}_{k^{*}}}{{{\textbf{G}}}_{k^{*}}^{\dag }} \right) \right) }\) can be written in terms of the ordered eigenvalues of \({{\textbf{G}}_{k^{*}}}{{{\textbf{G}}}_{k^{*}}^{\dag }}\), i.e., \(0\le \mu _{k^{*},1} \le \cdots \le \mu _{k^{*},L}\) and hence, (36) can be expressed as

$$\begin{aligned} \Pr \left( {\mathcal {O}}^{k^*}_s \right) \doteq \Pr \left( \frac{\det \left( {{{\textbf{I}}}_{{{n_r}}}}+\text {SNR}{{\textbf{H}}_{k^{*}}}{{{\textbf{H}}}_{k^{*}}^{\dag }} \right) }{\Pi _{i=1}^{{L}}(1+{{\mu }_{k^*,i}}\text {SNR}))}<{\text {SNR}}^{Kr_s} \right) . \end{aligned}$$
(C9)

As in “Appendix A”, we can simplify the denominator at high SNR, i.e., \((1+{{\mu }_{k^*,i}}\text {SNR}) {\dot{\ge }}\, \text {SNR}\). Therefore, (C9) is lower bounded by

$$\begin{aligned} \Pr \left( {\mathcal {O}}^{k^*}_s\right) {\dot{\ge }} \Pr \left( \det \left( {{{\textbf{I}}}_{{{n_r}}}+\text {SNR}{{\textbf{H}}_{k^{*}}}{{{\textbf{H}}}_{k^{*}}^{\dag }}} \right) <{\text {SNR}}^{Kr_s+{L}} \right) . \end{aligned}$$
(C10)

We define the variable \(Z_k=\det \left( {{{\textbf{I}}}_{{{n_r}}}+\text {SNR}{{\textbf{H}}_{k}}{{{\textbf{H}}}_{k}^{\dag }}} \right)\) for \(k=1,\ldots ,K\). As \(k^*=\arg \underset{k}{\mathop {\max }}\, Z_k\), we can write

$$\begin{aligned} \Pr \left( {\mathcal {O}}^{k^*}_s \right)&{\dot{\ge }} \Pr \left( \max Z_k <{\text {SNR}}^{Kr_s+{L}} \right) \\&{\dot{\ge }} \left( F_{Z_k} \left( {\text {SNR}}^{Kr_s+{L}}\right) \right) ^K, \end{aligned}$$
(C11)

where \(F_{Z_k}(.)\) is the cumulative distribution function of \({Z_k}\) and the result is due to the ordered statistics [34]. This yields

$$\begin{aligned} F_{Z_k} \left( {\text {SNR}}^{Kr_s+{L}}\right)=\Pr \left( Z_k<{\text {SNR}}^{Kr_s+{L}}\right) \end{aligned}$$
(C12a)
$$\begin{aligned}=\Pr \left( \det \left( {{{\textbf{I}}}_{{{n_r}}}+\text {SNR}{{\textbf{H}}_{k}}{{{\textbf{H}}}_{k}^{\dag }}} \right) <{\text {SNR}}^{Kr_s+{L}}\right) \end{aligned}$$
(C12b)
$$\begin{aligned}\doteq \text {SNR}^{-d_{n_t,{{n}_{r}}}(Kr_s+{L})} \end{aligned}$$
(C12c)
$$\begin{aligned}\doteq \left\{ \begin{array}{ll} \text {SNR}^{-d_{n_t-n_e,{{n}_{r}-n_e}}(Kr_s)},\,\,\,n_e < \min (n_t,n_r),\\ 1, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text {O.W.},\\ \end{array} \right. \end{aligned}$$
(C12d)

where (C12c) and (C12d) follow the same analysis of (A3d) and (A3e). Substituting the result of (C12) in (C11), the lower bound can be expressed as

$$\begin{aligned} \Pr \left( {\mathcal {O}}^{k^*}_s \right) {\dot{\ge }} \text {SNR}^{-Kd_{n_t-n_e,{{n}_{r}-n_e}}(Kr_s)} \,\,\, \,\,\, n_e< \min (n_t,n_r), \end{aligned}$$
(C13)

and if \(n_e \ge \min (n_t,n_r)\), \(\Pr \left( {\mathcal {O}}^{k^*}_s \right) \doteq 1\). Therefore, Lemma 3 is proved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roostaei, A., Derakhtian, M. Secret DMT Analysis for a Multiuser MIMO Fading Channel. Wireless Pers Commun 135, 2439–2463 (2024). https://doi.org/10.1007/s11277-024-11176-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11176-2

Keywords

Navigation