Skip to main content
Log in

Exploiting HDU/FDU-NOMA Schemes for Reliable Communication in Post-disaster Scenario

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work presents a reliable communication system tailored for post-disaster scenarios, where the existing terrestrial communication infrastructure is entirely disrupted by natural calamities. To encounter the situation, a Temporary Base Station (TBS) is deployed in the heart of the disaster-stricken area. However, due to the limited coverage area of the TBS, reaching far users becomes unattainable. To address this, Unmanned Aerial Vehicles (UAVs) are proposed as flying relays with indirect connectivity, utilizing Half-Duplex/Full-Duplex (HD/FD) Non-Orthogonal Multiple Access (NOMA) schemes, abbreviated as HDU/FDU-NOMA. The UAVs, strategically positioned around the TBS on a circular path, can move radially outward or inward based on far user throughput demands and also serve as near-users. Moreover, a Weibull fading distribution (WD) is taken into account for both links, encompassing transmissions from far-users to UAVs and from UAVs to TBS. To assess communication reliability, exact and closed-form expressions for outage probability and throughput performance are derived. These expressions aid in identifying optimal UAV locations to achieve throughput fairness for both far-users and near-users, as well as maximizing throughput for far-users. Additionally, the proposed scheme’s outage and throughput performance is demonstrated to surpass that of corresponding Orthogonal Multiple Access (OMA) schemes in the uplink. Simulation results conform to the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.

    Article  Google Scholar 

  2. Lin, Z., Lin, M., De Cola, T., Wang, J.-B., Zhu, W.-P., & Cheng, J. (2021). Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks. IEEE Internet of Things Journal, 8(14), 11123–11134.

    Article  Google Scholar 

  3. Liu, M., Yang, J., & Gui, G. (2019). DSF-NOMA: UAV-assisted emergency communication technology in a heterogeneous internet of things. IEEE Internet of Things Journal, 6(3), 5508–5519.

    Article  Google Scholar 

  4. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  5. Liu, Y., Zhang, S., Mu, X., Ding, Z., Schober, R., Al-Dhahir, N., Hossain, E., & Shen, X. (2022). Evolution of NOMA toward next generation multiple access (NGMA) for 6G. IEEE Journal on Selected Areas in Communications, 40(4), 1037–1071.

    Article  Google Scholar 

  6. Lin, Z., Lin, M., Huang, Y., De Cola, T., & Zhu, W.-P. (2019). Robust multi-objective beamforming for integrated satellite and high altitude platform network with imperfect channel state information. IEEE Transactions on Signal Processing, 67(24), 6384–6396.

    Article  MathSciNet  Google Scholar 

  7. Ling, B., Dong, C., Dai, J., & Lin, J. (2017). Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wireless Communications Letters, 6(4), 498–501.

    Article  Google Scholar 

  8. Liu, G., Chen, X., Ding, Z., Ma, Z., & Yu, F. R. (2017). Hybrid half-duplex/full-duplex cooperative non-orthogonal multiple access with transmit power adaptation. IEEE Transactions on Wireless Communications, 17(1), 506–519.

    Article  Google Scholar 

  9. Lee, S., Da Costa, D. B., Vien, Q.-T., Duong, T. Q., & de Sousa, R. T. (2017). Non-orthogonal multiple access schemes with partial relay selection. IET Communications, 11(6), 846–854.

    Article  Google Scholar 

  10. Men, J., & Ge, J. (2015). Performance analysis of non-orthogonal multiple access in downlink cooperative network. IET Communications, 9(18), 2267–2273.

    Article  Google Scholar 

  11. Aswathi, V., & Babu, A. V. (2020). Non-orthogonal multiple access in full-duplex-based coordinated direct and relay transmission (CDRT) system: Performance analysis and optimization. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1–27.

    Google Scholar 

  12. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  13. Kim, J.-B., & Lee, I.-H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.

    Article  Google Scholar 

  14. Lin, Z., Niu, H., An, K., Wang, Y., Zheng, G., Chatzinotas, S., & Hu, Y. (2022). Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Transactions on Aerospace and Electronic Systems, 58(4), 3717–3724.

    Article  Google Scholar 

  15. Gong, C., Dai, X., Cui, J., & Long, K. (2023). Performance analysis of distributed reconfigurable intelligent surface aided NOMA systems. Wireless Personal Communications, 131, 217.

    Article  Google Scholar 

  16. ur Rahman, S., Kim, G.-H., Cho, Y.-Z., & Khan, A. (2018). Positioning of UAVs for throughput maximization in software-defined disaster area UAV communication networks. Journal of Communications and Networks, 20(5), 452–463.

    Article  Google Scholar 

  17. Zheng, H. E. T., Madhukumar, A., Sirigina, R. P., Krishna, A. K. (2019). An outage probability analysis of full-duplex NOMA in UAV communications. In IEEE Wireless Communications and Networking Conference (WCNC). IEEE. Vol. 2019. pp 1–5.

  18. An, K., Lin, M., Ouyang, J., & Zhu, W.-P. (2016). Secure transmission in cognitive satellite terrestrial networks. IEEE Journal on Selected Areas in Communications, 34(11), 3025–3037.

    Article  Google Scholar 

  19. Wang, L., Hu, B., Chen, S., & Cui, J. (2020). UAV-enabled reliable mobile relaying based on downlink NOMA. IEEE Access, 8, 25237–25248.

    Article  Google Scholar 

  20. Zhang, J., Zheng, X., Pan, G., & Xie, Y. (2021). On secrecy analysis of UAV-enabled relaying NOMA systems. Physical Communication, 45, 101263.

    Article  Google Scholar 

  21. Nguyen, L.-M.-D., Vo, V. N., So-In, C., & Dang, V.-H. (2021). Throughput analysis and optimization for NOMA multi-UAV assisted disaster communication using CMA-ES. Wireless Networks, 27, 4889–4902.

    Article  Google Scholar 

  22. Ghosh, S., Roy, S. D., & Kundu, S. (2023). Uav assisted swipt enabled noma based d2d network for disaster management. Wireless Personal Communications, 128(4), 2341–2362.

    Article  Google Scholar 

  23. Trotta, A., Andreagiovanni, F. D., Di Felice, M., Natalizio, E., & Chowdhury, K. R. (2018). When UAVs ride a bus: Towards energy-efficient city-scale video surveillance. In IEEE infocom 2018-IEEE conference on computer communications. IEEE, pp. 1043–1051.

  24. Han, S. I., & Baek, J. (2021). Optimal UAV deployment and resource management in UAV relay networks. Sensors, 21(20), 6878.

    Article  Google Scholar 

  25. Shakhatreh, H., Alenezi, A., Sawalmeh, A., Almutiry, M., & Malkawi, W. (2021). Efficient placement of an aerial relay drone for throughput maximization, Wireless Communications and Mobile Computing, vol. 2021.

  26. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters, 20(8), 1647–1650.

    Article  Google Scholar 

  27. Elnabty, I. A., Fahmy, Y., & Kafafy, M. (2022). A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks. Physical Communication, 51, 101564.

    Article  Google Scholar 

  28. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2017). Exploiting full/half-duplex user relaying in NOMA systems. IEEE Transactions on Communications, 66(2), 560–575.

    Article  Google Scholar 

  29. Kader, M. F., & Shin, S. Y. (2017). Coordinated direct and relay transmission using uplink NOMA. IEEE Wireless Communications Letters, 7(3), 400–403.

    Article  Google Scholar 

  30. Do, N. T., Da Costa, D. B., Duong, T. Q., & An, B. (2016). A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Communications Letters, 21(3), 664–667.

    Article  Google Scholar 

  31. Do, T. N., da Costa, D. B., Duong, T. Q., & An, B. (2018). Improving the performance of cell-edge users in NOMA systems using cooperative relaying. IEEE Transactions on Communications, 66(5), 1883–1901.

    Article  Google Scholar 

  32. Nguyen, H.-T.-T., Nguyen, T., & Tran, X. N. (2021). Full-duplex cooperative NOMA system under impacts of residual SI and MAI. International Journal of Electronics, 108(5), 858–875.

    Article  Google Scholar 

  33. Thi Tam, D., Cao Nguyen, B., Manh Hoang, T., The Dung, L., Vinh, N. V., Kim, T., & Lee, W. (2023). Combining FD-UAV and NOMA technologies in IoT sensor network with millimeter-wave communications. International Journal of Communication Systems. https://doi.org/10.1002/dac.5492

    Article  Google Scholar 

  34. Men, J., Ge, J., & Zhang, C. (2016). Performance analysis of nonorthogonal multiple access for relaying networks over nakagami-\( m \) fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208.

    Article  Google Scholar 

  35. Bepari, D., Misra, A., Mondal, S., & Bala, I. (2024). Partial cooperative NOMA for improving outage performance of edge users. International Journal of Electronics Letters, 12, 69–86.

    Article  Google Scholar 

  36. Zhai, D., Li, H., Tang, X., Zhang, R., Ding, Z., & Yu, F. R. (2020). Height optimization and resource allocation for NOMA enhanced UAV-aided relay networks. IEEE Transactions on Communications, 69(2), 962–975.

    Article  Google Scholar 

  37. Barick, S., & Singhal, C. (2022). Multi-UAV assisted IoT NOMA uplink communication system for disaster scenario. IEEE Access, 10, 34058–34068.

    Article  Google Scholar 

  38. Chiaraviglio, L., D’Andreagiovanni, F., Liu, W., Gutierrez, J. A., Blefari-Melazzi, N., Choo, K.-K.R., & Alouini, M.-S. (2020). Multi-area throughput and energy optimization of UAV-aided cellular networks powered by solar panels and grid. IEEE Transactions on Mobile Computing, 20(7), 2427–2444.

    Article  Google Scholar 

  39. Kumar, R., & Kumar, S. (2023). HD/FD cooperative NOMA under UAV deployment for a novel disaster-management model. Electronics, 12(3), 513.

    Article  Google Scholar 

  40. Huaicong, K., Min, L., Zhang, J., Ouyang, J., Jun-Bo, W., & Upadhyay, P. K. (2022). Ergodic sum rate for uplink NOMA transmission in satellite-aerial-ground integrated networks. Chinese Journal of Aeronautics, 35(9), 58–70.

    Article  Google Scholar 

  41. Kong, H., Lin, M., Han, L., Zhu, W.-P., Ding, Z., & Alouini, M.-S. (2023). Uplink multiple access with semi-grant-free transmission in integrated satellite-aerial-terrestrial networks. IEEE Journal on Selected Areas in Communications, 41, 1723.

    Article  Google Scholar 

  42. Ueda, Y. (2014). Vehicle-mounted transportable mobile base station and backhaul link for disaster relief operation. New Breeze, 26(3), 1–14.

    Google Scholar 

  43. ITU (2019). Recommendation itu-r f.1105-4: Fixed wireless systems for disaster mitigation and relief operations. pp. 1–15.

  44. Bello, A. B., Navarro, F., Raposo, J., Miranda, M., Zazo, A., & Álvarez, M. (2022). Fixed-wing UAV flight operation under harsh weather conditions: A case study in Livingston Island glaciers, Antarctica. Drones, 6(12), 384.

    Article  Google Scholar 

  45. Ding, Z., Fan, P., & Poor, H. V. (2015). Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023.

    Article  Google Scholar 

  46. Le, C.-B., & Do, D. T. (2020). Two policies for wireless non-orthogonal multiple access systems: System model and performance enhancement of far user. International Journal of Communication Systems, 33(18), e4615.

    Article  Google Scholar 

  47. Cheng, J., Tellambura, C., & Beaulieu, N. C. (2023). Performance analysis of digital modulations on weibull fading channels. In IEEE 58th vehicular technology conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484). IEEE, vol. 1. pp 236–240.

  48. Li, X., Li, J., & Li, L. (2019). Performance analysis of impaired swipt NOMA relaying networks over imperfect Weibull channels. IEEE Systems Journal, 14(1), 669–672.

    Article  Google Scholar 

  49. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2016). Full-duplex device-to-device-aided cooperative nonorthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471.

    Google Scholar 

  50. Zhang, N., Wang, J., Kang, G., & Liu, Y. (2016). Uplink nonorthogonal multiple access in 5G systems. IEEE Communications Letters, 20(3), 458–461.

    Article  Google Scholar 

  51. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.

    Article  Google Scholar 

  52. Zhong, C., Suraweera, H. A., Zheng, G., Krikidis, I., & Zhang, Z. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62(10), 3447–3461.

    Article  Google Scholar 

  53. Guo, K., An, K., Zhou, F., Tsiftsis, T. A., Zheng, G., & Chatzinotas, S. (2021). On the secrecy performance of NOMA-based integrated satellite multiple-terrestrial relay networks with hardware impairments. IEEE Transactions on Vehicular Technology, 70(4), 3661–3676.

    Article  Google Scholar 

  54. Guo, K., Dong, C., & An, K. (2022). Noma-based cognitive satellite terrestrial relay network: Secrecy performance under channel estimation errors and hardware impairments. IEEE Internet of Things Journal, 9(18), 17334–17347.

    Article  Google Scholar 

  55. Guo, K., Liu, R., Alazab, M., Jhaveri, R. H., Li, X., & Zhu, M. (2023). STAR-RIS-empowered cognitive non-terrestrial vehicle network with NOMA. IEEE Transactions on Intelligent Vehicles, 8, 3735.

    Article  Google Scholar 

Download references

Acknowledgements

I thank the valuable input of Dr. Arvind Kumar, Dr. Shyampratap Singh, and Dr. Nitish Kumar Guru. I express my gratefulness to the UGC for funding the research works.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions.

Corresponding author

Correspondence to Rampravesh Kumar.

Ethics declarations

Conflict of interest

There are no Conflict of interest declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Theorem 1

Substituting the value of \(\varpi = 1\) into (14) for FDU-NOMA, Outage probability at TBS for \({U_1}\) can be written as

$$\begin{aligned} \begin{array}{r} P_{OutBS,U1}^{FD} = 1 - pr\left\{ {|{h_1}{|^2} > \max \frac{1}{\rho _1}\left( {\frac{\gamma _{2th}^{x_{2U}}}{({a_2} - {a_1}\gamma _{2th}^{x_{2U}})},\frac{\gamma _{1th}^{x_{2U}}}{a_1}} \right) } \right\} \\ \end{array} \end{aligned}$$
(28)

Let

$$\begin{aligned} \begin{array}{l} {J_1} = {pr\left\{ {|{h_1}{|^2} > \max \frac{1}{{{\rho _1}}}\left( {\frac{{\gamma _{2th}^{{x_{2U}}}}}{{({a_2} - {a_1}\gamma _{2th}^{{x_{2U}}})}},\frac{{\gamma _{1th}^{{x_{1U}}}}}{{{a_1}}}} \right) } \right\} }\\ \end{array} \end{aligned}$$
(29)
$$\begin{aligned} \begin{array}{l} {J_1} = pr\left\{ {|{h_1}{|^2} > \frac{\xi }{\rho _1}} \right\} \\ = \int \limits _{\frac{\xi }{\rho _1}}^\infty {{f_{{{\left| {{h_1}} \right| }^2}}}\left( v \right) } dv = {e^{-\frac{{{{\left( {{\xi /{\rho _1}}} \right) }^{B/2}}}}{{{A_1}}}}} \end{array} \end{aligned}$$
(30)

where, \(\xi = \max \left\{ {\frac{{\gamma _{2th}^{{x_{2U}}}}}{{\left( {{a_2} - {a_1}\gamma _{2th}^{{x_{2U}}}} \right) }},\frac{{\gamma _{1th}^{{x_{1U}}}}}{{{a_1}}}} \right\} \).

By substituting the value of \({J_1}\) from Eq. (30) into Eq. (28), outage probability at TBS for U1 in FDU-NOMA is obtained. This concludes the proof of Theorem 1.

1.2 Proof of Theorem 2

Substituting the value of \(\varpi = 1\) into (18) for FDU-NOMA, outage probability at TBS for \({U_2}\) can be written as

$$\begin{aligned} \begin{array}{r} P_{OutBS,U2}^{FD} = 1 - pr\left\{ {|{h_2}{|^2}> \frac{{(\varpi |{h_{LI}}{|^2}{\rho _1} + 1)\gamma _{2th}^{{x_{2U}}}}}{{{\rho _2}}}},{|{h_1}{|^2} > \frac{1}{{{\rho _1}}}\left( {\frac{{\gamma _{2th}^{{x_{2U}}}}}{{({a_2} - {a_1}\gamma _{2th}^{{x_{2U}}})}}} \right) } \right\} \\ \end{array} \end{aligned}$$
(31)

Let

$$\begin{aligned} \begin{array}{l} {J_2} = pr\left\{ {|{h_2}{|^2} > \frac{{(\varpi |{h_{LI}}{|^2}{\rho _1} + 1)\gamma _{2th}^{{x_{2U}}}}}{{{\rho _2}}}} \right\} \\ = pr\left( {{{\left| {{h_2}} \right| }^2} \ge \left( {\varpi {{\left| {{h_{LI}}} \right| }^2}{\rho _1} + 1} \right) T} \right) \\ = \int \limits _0^\infty {\int \limits _{\left( {x\rho + 1} \right) T}^\infty {{f_{{{\left| {{h_{LI}}} \right| }^2}}}\left( x \right) } } {f_{{{\left| {{h_2}} \right| }^2}}}\left( y \right) dxdy \end{array} \end{aligned}$$
(32)

plugging the value of \({f_{{{\left| {{h_2}} \right| }^2}}}\left( y \right) \) from (2) into (32), we get

$$\begin{aligned} \begin{array}{l} {J_2} = \\ \int \limits _0^\infty {{f_{{{\left| {{h_{LI}}} \right| }^2}}}\left( x \right) } \left[ {\int \limits _{\left( {x\rho + 1} \right) T}^\infty {\frac{{B/2}}{{{A_2}}}{y^{(B/2 - 1)}}{e^{\frac{{ - {y^{B/2}}}}{{{A_2}}}}}dy} } \right] dx \end{array} \end{aligned}$$
(33)

After algebraic manupulation, further plugging the value of \({f_{{{\left| {{h_{LI}}} \right| }^2}}}\left( x \right) \) from (2) into (33), we get

$$\begin{aligned} {J_2} = \frac{B}{{2{A_{LI}}}}\int \limits _0^\infty {{x^{\left( {\frac{B}{2} - 1} \right) }}{e^{ - \left\{ {\frac{{{x^{B/2}}}}{{{A_{LI}}}} + \frac{{{{\left( {\left( {x\rho + 1} \right) T} \right) }^{B/2}}}}{{{A_2}}}} \right\} }}dx} \end{aligned}$$
(34)

where, \(T = \frac{{\gamma _{2th}^{{x_{2U}}}}}{{{\rho _2}}}\).

$$\begin{aligned} \begin{array}{r} {J_3} = pr\left\{ {|{h_1}{|^2} > \frac{1}{{{\rho _1}}}\left( {\frac{{\gamma _{2th}^{{x_{2U}}}}}{{({a_2} - {a_1}\gamma _{2th}^{{x_{2U}}})}}} \right) } \right\} \\ \end{array} \end{aligned}$$
(35)
$$\begin{aligned} \begin{array}{l} {J_3} = pr\left\{ {|{h_1}{|^2} > \frac{{Q} }{{{\rho _1}}}} \right\} \\ = \int \limits _{\frac{{Q} }{{{\rho _1}}}}^\infty {{f_{{{\left| {{h_1}} \right| }^2}}}\left( v \right) } dv = {e^{-\frac{{{{\left( {{{Q} /{\rho _1}}} \right) }^{B/2}}}}{{{A_1}}}}} \end{array} \end{aligned}$$
(36)

Multiplying Eq. (34) and Eq. (36), the obtained expression for J is given by

$$\begin{aligned} \begin{array}{l} J = {J_2} \times {J_3}\\ = \left\{ {\frac{B}{{2{A_{LI}}}}{e^{-\frac{{ {{\left( {{{Q} /{\rho _1}}} \right) }^{B/2}}}}{{{A_1}}}}}} \right\} \times \int \limits _0^\infty {{x^{\left( {\frac{B}{2} - 1} \right) }}{e^{ - \left\{ {\frac{{{x^{B/2}}}}{{{A_{LI}}}} + \frac{{{{\left( {\left( {x\rho + 1} \right) T} \right) }^{B/2}}}}{{{A_2}}}} \right\} }}dx} \end{array} \end{aligned}$$
(37)

Finally, substituting the value of J from Eq. (37) in Eq. (31), we get

$$\begin{aligned} \begin{array}{l} P_{Out,BS}^{FDR} = 1 - \left[ {\frac{{B/2}}{{{A_{LI}}}}{e^{\left( {\frac{{ - {{\left( {\xi /{\rho _1}} \right) }^{B/2}}}}{{{A_1}}}} \right) }}} \right] \int \limits _0^\infty {{x^{(B/2 - 1)}}{e^{\left[ {\frac{{ - {x^{B/2}}}}{{{A_{LI}}}} + \frac{{ - {{\left\{ {(x{\rho _1} + 1)T} \right\} }^{B/2}}}}{{{A_2}}}} \right] }}} dx \end{array}\ \end{aligned}$$
(38)

The proof of Theorem 2 is concluded by obtaining the outage probability at TBS for U2 in FDU-NOMA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Srivastava, S. & Kumar, S. Exploiting HDU/FDU-NOMA Schemes for Reliable Communication in Post-disaster Scenario. Wireless Pers Commun 135, 1701–1724 (2024). https://doi.org/10.1007/s11277-024-11144-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11144-w

Keywords

Navigation