Skip to main content
Log in

A Compact Patch Antenna for 5G Communication (39 GHz-mmWave-n260) Employing Aperture Coupled Feeding Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the present work Aperture Coupled Feed (ACF) microstrip patch antenna for 5G communication is proposed. The proposed antenna has a very compact size of 2.2 × 2.2 × 0.3λg (mm3), it is printed on Rogers RT Duroid 5880 with \({\varepsilon }_{r}\)= 2.2. The antenna having two vertical layer of 0.8 mm separated by air gap of 0.035 mm. The upper edge of substrate has a circular ring patch working as radiator whereas bottom having no metallization. Upper portion of lower substrate has plus shape slot and at bottom is a rectangular feed line acting as feeder to patch antenna. The antenna operatable from 36.84 to 46.78 GHz and having an operating frequency of 38.40 GHz. The overall B.W% achieved is 25.91% and peak gain observed to be 7.32 dB. The measured results are in close agreement with the simulated one. Prior to approaching ACF technique, a conventional microstrip patch antenna with circular radiator with size of 2.2 × 2.2 × 0.15λg (mm3), printed on single PCB of same material was considered. The antenna gets operatable from 33.07 to 39.5 GHz and resonating at 38.02 GHz. The overall B.W% achieved is 17.10% and peak gain of 8.1 dB. Both antennas are good candidature for 5G Communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Kiouach, F., El Ghzaoui, M., Das, S., et al. (2023). A compact wideband printed 4 × 4 MIMO antenna with high gain and circular polarization characteristics for mm-wave 5G NR n260 applications. Wireless Personal Communications, 133, 1857–1886.

    Article  Google Scholar 

  2. Dzagbletey, P. A., & Chung, J. Y. (2023). Conductive ink printed fabric antenna with aperture feeding technique. Applied Sciences, 13(5), 2902.

    Article  Google Scholar 

  3. Pigeon, M., Delaveaud, C., Rudant, L., & Belmkaddem, K. (2014). Miniature directive antennas. International Journal of Microwave and Wireless Technologies, 6(1), 45–50.

    Article  Google Scholar 

  4. Dash, S. K. K., Cheng, Q. S., & Khan, T. (2021). A superstrate loaded aperture coupled dual-band circularly polarized dielectric resonator antenna for X-band communications. International Journal of Microwave and Wireless Technologies, 13(8), 867–874.

    Article  Google Scholar 

  5. 5G Americas, 3GPP 5GNR NSA specification and wireless 20/20, December 2018.

  6. Chaudhary, S., & Kansal, A. (2023). Compact high gain 28, 38 GHz antenna for 5G communication. International Journal of Electronics, 110(6), 1028–1048.

    Article  Google Scholar 

  7. Shereen, M. K., & Khattak, M. I. (2022). A hybrid reconfigurability structure for a novel 5G monopole antenna for future mobile communications at 28/38 GHz. Arabian Journal for Science and Engineering, 47(3), 2745–2753.

    Article  Google Scholar 

  8. Hwang, I. J., Oh, J. I., Jo, H. W., Kim, K. S., Yu, J. W., & Lee, D. J. (2021). 28 GHz and 38 GHz dual-band vertically stacked dipole antennas on flexible liquid crystal polymer substrates for millimeter-wave 5G cellular handsets. IEEE Transactions on Antennas and Propagation, 70(5), 3223–3236.

    Article  Google Scholar 

  9. Swetha, R., & Anjaneyulu, L. (2021). Novel design and characterization of wide band hook shaped aperture coupled circularly polarized antenna for 5G application. Progress In Electromagnetics Research C, 113, 161–175.

    Article  Google Scholar 

  10. Le Thi, C. H., Ta, S. X., Nguyen, X. Q., Nguyen, K. K., & Dao-Ngoc, C. (2021). Design of compact broadband dual-polarized antenna for 5G applications. International Journal of RF and Microwave Computer-Aided Engineering, 31(5), e22615.

    Google Scholar 

  11. de Paula, I. L., Lemey, S., Bosman, D., Van den Brande, Q., Caytan, O., Lambrecht, J., & Rogier, H. (2020). Cost-effective high-performance air-filled SIW antenna array for the global 5G 26 GHz and 28 GHz bands. IEEE Antennas and Wireless Propagation Letters, 20(2), 194–198.

    Article  Google Scholar 

  12. Van den Brande, Q., Lemey, S., Vanfleteren, J., & Rogier, H. (2018). Highly efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate integrated waveguide technology. IEEE Transactions on Antennas and Propagation, 66(5), 2199–2209.

    Article  Google Scholar 

  13. Mohamed, I. M., & Sebak, A. R. (2019). 60 GHz 2-D scanning multibeam cavity-backed patch array fed by compact SIW beamforming network for 5G applications. IEEE Transactions on Antennas and Propagation, 67(4), 2320–2331.

    Article  Google Scholar 

  14. Kapusuz, K. Y., Lemey, S., & Rogier, H. (2019). Dual-polarized 28-GHz air-filled SIW phased antenna array for next-generation cellular systems. In 2019 IEEE International Symposium on Phased Array System & Technology (PAST) (pp. 1–6). IEEE.

  15. Belenguer, A., Esteban, H., & Boria, V. E. (2014). Novel empty substrate integrated waveguide for high-performance microwave integrated circuits. IEEE transactions on microwave theory and techniques, 62(4), 832–839.

    Article  Google Scholar 

  16. Parment, F., Ghiotto, A., Vuong, T. P., Duchamp, J. M., & Wu, K. (2015). Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits. IEEE Transactions on Microwave Theory and Techniques, 63(4), 1228–1238.

    Article  Google Scholar 

  17. Parment, F., Ghiotto, A., Vuong, T. P., Duchamp, J. M., & Wu, K. (2016). Double dielectric slab-loaded air-filled SIW phase shifters for high-performance millimeter-wave integration. IEEE Transactions on Microwave Theory and Techniques, 64(9), 2833–2842.

    Article  Google Scholar 

  18. Parment, F., Ghiotto, A., Vuong, T. P., Duchamp, J. M., & Wu, K. (2017). Ka-band compact and high-performance bandpass filter based on multilayer air-filled SIW. Electronics Letters, 53(7), 486–488.

    Article  Google Scholar 

  19. Morro, J. V., Rodríguez, A., Belenguer, A., Esteban, H., & Boria, V. (2016). Multilevel transition in empty substrate integrated waveguide. Electronics Letters, 52(18), 1543–1544.

    Article  Google Scholar 

  20. den Brande, V., Quinten, et al. (2019). A hybrid integration strategy for compact, broadband, and highly efficient millimeter-wave on-chip antennas. IEEE Antennas and Wireless Propagation Letters, 18(11), 2424–2428.

    Article  Google Scholar 

  21. Li, Y., & Luk, K. M. (2014). Low-cost high-gain and broadband substrate-integrated-waveguide-fed patch antenna array for 60-GHz band. IEEE Transactions on Antennas and Propagation, 62(11), 5531–5538.

    Article  MathSciNet  Google Scholar 

  22. Li, Y., & Luk, K. M. (2015). 60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays. IEEE Transactions on Antennas and Propagation, 63(3), 1075–1085.

    Article  MathSciNet  Google Scholar 

  23. Parment, F., Ghiotto, A., Vuong, T. P., Duchamp, J. M., & Wu, K. (2017). Millimetre-wave air-filled substrate integrated waveguide slot array antenna. Electronics Letters, 53(11), 704–706.

    Article  Google Scholar 

  24. Qi, Z., Li, X., Xiao, J., & Zhu, H. (2019). Low-cost empty substrate integrated waveguide slot arrays for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 18(5), 1021–1025.

    Article  Google Scholar 

  25. Diawuo, H. A., & Jung, Y. B. (2018). Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications. IEEE Antennas and Wireless Propagation Letters, 17(7), 1286–1290.

    Article  Google Scholar 

  26. Ali, M. M. M., & Sebak, A. (2019). Printed RGW circularly polarized differential feeding antenna array for 5G communications. IEEE Transactions on Antennas and Propagation, 67(5), 3151–3160.

    Article  Google Scholar 

  27. Tighezza, M., Rahim, S. K. A., & Islam, M. T. (2018). Flexible wideband antenna for 5G applications. Microwave and Optical Technology Letters, 60(1), 38–44.

    Article  Google Scholar 

  28. Sa’don, S. N., Kamarudin, M. R., Ahmad, F., Jusoh, M., & Majid, H. A. (2017). Graphene array antenna for 5G applications. Applied Physics A, 123, 1–4.

    Article  Google Scholar 

  29. Kumar, A., De, A., & Jain, R. K. (2023). Compact and stable FSS loaded on planar monopole antenna for UWB applications. Wireless Personal Communications, 133, 507–523. https://doi.org/10.1007/s11277-023-10776-8

    Article  Google Scholar 

  30. Wang, W., Wu, Y., Wang, W., & Yang, Y. (2020). Isolation enhancement in dual-band monopole antenna for 5G applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(6), 1867–1871.

    Google Scholar 

  31. Vinodha, E. (2023). Bandwidth enhancement scheme for a low profile rectangular dielectric resonator antenna with a flagpole shaped microstrip feed. Wireless Personal Communications, 132, 1751–1764. https://doi.org/10.1007/s11277-023-10661-4

    Article  Google Scholar 

Download references

Acknowledgements

Not Available

Funding

The authors declare that no funds, grant, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Amit Abhishek & Priyadarshi Suraj. The first draft of the manuscript was written by Amit Abhishek. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amit Abhishek.

Ethics declarations

Conflict of interest

The author(s) declare none.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhishek, A., Suraj, P. A Compact Patch Antenna for 5G Communication (39 GHz-mmWave-n260) Employing Aperture Coupled Feeding Technique. Wireless Pers Commun 135, 1259–1284 (2024). https://doi.org/10.1007/s11277-024-11127-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11127-x

Keywords

Navigation