Skip to main content
Log in

Cluster-Based Multi-attribute Routing Protocol for Underwater Acoustic Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Underwater Acoustic Sensor Networks play a significant role in various underwater applications. There are several challenges in underwater communications like high bit-error-rate, low bandwidth, high energy consumption, void-node during routing, etc. Handling void-node during routing is a major challenge in underwater routing. There are well-known void-handling protocols like Energy-efficient Void-Aware Geographic Routing protocol, HydroCast, etc. However, these routing protocols require all neighboring nodes must be a part of the cluster which increases the overhead on clustering, or void-node has a part of the routing. This paper proposes an underwater routing protocol referred to as Cluster-based Multi-Attribute Routing (CMAR) to overcome these issues. It is a sender-based, opportunistic underwater routing protocol. CMAR uses the Technique for Order of Preference by Similarity to Ideal Solution to evaluate the suitability of the neighboring nodes and the basis for clustering process initialization. Through MATLAB simulations, the performance of the CMAR is compared with HydroCast in terms of the number of nodes selected in the forwarding set, number of clusters formed, number of times void-node becomes part of routing and transmission reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code Availability

Code is available only in specific cases.

References

  1. Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1958), 158–175.

    Article  Google Scholar 

  2. Pompili, D., Melodia, T., & Akyildiz, I.F.(2006). Routing algorithms for delay-insensitive and delay-sensitive applications in underwater sensor networks. In: Proceedings of the 12th annual international conference on mobile computing and networking, (pp. 298–309)

  3. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2015). A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, 34, 144–156.

    Article  Google Scholar 

  4. Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8.

    Article  Google Scholar 

  5. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.

    Article  Google Scholar 

  6. Coutinho, R.W., Vieira, L.F., & Loureiro, A.A. (2013) Movement assisted-topology control and geographic routing protocol for underwater sensor networks. In Proceedings of the 16th ACM international conference on modeling, analysis & simulation of wireless and mobile systems, (pp. 189–196)

  7. Kheirabadi, M. T., & Mohamad, M. M. (2013). Greedy routing in underwater acoustic sensor networks: A survey. International Journal of Distributed Sensor Networks, 9(7), 701834.

    Article  Google Scholar 

  8. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2017). Void-handling techniques for routing protocols in underwater sensor networks: Survey and challenges. IEEE Communications Surveys & Tutorials, 19(2), 800–827.

    Article  Google Scholar 

  9. Alasarpanahi, H., Ayatollahitafti, V., & Gandomi, A. (2020). Energy-efficient void avoidance geographic routing protocol for underwater sensor networks. International Journal of Communication Systems, 33(6), 4218.

    Article  Google Scholar 

  10. Xie, P., Zhou, Z., Peng, Z., Cui, J.-H., & Shi, Z. (2009) Void avoidance in three-dimensional mobile underwater sensor networks. In International conference on wireless algorithms, systems, and applications, (pp. 305–314) . Springer

  11. Boukerche, A., & Darehshoorzadeh, A. (2014). Opportunistic routing in wireless networks: Models, algorithms, and classifications. ACM Computing Surveys (CSUR), 47(2), 1–36.

    Article  Google Scholar 

  12. Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2016). Design guidelines for opportunistic routing in underwater networks. IEEE Communications Magazine, 54(2), 40–48. https://doi.org/10.1109/MCOM.2016.7402259

    Article  Google Scholar 

  13. Coutinho, R.W., Boukerche, A., Vieira, L.F., & Loureiro, A.A. (2015) Modeling and analysis of opportunistic routing in low duty-cycle underwater sensor networks. In Proceedings of the 18th ACM international conference on modeling, analysis and simulation of wireless and mobile systems, (pp. 125–132)

  14. Noh, Y., Lee, U., Lee, S., Wang, P., Vieira, L. F., Cui, J.-H., Gerla, M., & Kim, K. (2015). Hydrocast: Pressure routing for underwater sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 333–347.

    Article  Google Scholar 

  15. Shahrabi, A., Ghoreyshi, S. M., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.

    Article  Google Scholar 

  16. Zhu, Y., Tian, D., & Yan, F. (2020). Effectiveness of entropy weight method in decision-making. Mathematical Problems in Engineering, 2020, 1–5.

    Google Scholar 

  17. Foubert, B., & Mitton, N. (2021). RODENT: a flexible TOPSIS based routing protocol for multi-technology devices in wireless sensor networks. ITU Journal on Future and Evolving Technologies, 2(1).

  18. Barbeau, M., Blouin, S., Cervera, G., Garcia-Alfaro, J., & Kranakis, E. (2015). Location-free link state routing for underwater acoustic sensor networks. In 2015 IEEE 28th Canadian conference on electrical and computer engineering (CCECE), (pp. 1544–1549) IEEE

  19. Nazareth, P., & Chandavarkar, B. (2022). Location-free void avoidance routing protocol for underwater acoustic sensor networks. Wireless Personal Communications, 123, 1–26.

    Article  Google Scholar 

  20. Ghoreyshi, S.M., Shahrabi, A., & Boutaleb, T. (2015) An inherently void avoidance routing protocol for underwater sensor networks. In: 2015 International symposium on wireless communication systems (ISWCS)

  21. Basagni, S., Petrioli, C., Petroccia, R., & Spaccini, D. (2015). CARP: A channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Networks, 34, 92–104.

    Article  Google Scholar 

  22. Han, G., Liu, L., Bao, N., Jiang, J., Zhang, W., & Rodrigues, J. J. (2017). AREP: An asymmetric link-based reverse routing protocol for underwater acoustic sensor networks. Journal of Network and Computer Applications, 92, 51–58.

    Article  Google Scholar 

  23. Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.

    Article  Google Scholar 

  24. Xie, P., Cui, J.-H., & Lao, L. (2006). Vbf: Vector-based forwarding protocol for underwater sensor networks. In International conference on research in networking, (pp. 1216–1221) Springer

  25. Yu, H., Yao, N., & Liu, J. (2015). An adaptive routing protocol in underwater sparse acoustic sensor networks. Ad Hoc Networks, 34, 121–143.

    Article  Google Scholar 

  26. Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2016). Geographic and opportunistic routing for underwater sensor networks. IEEE Transactions on Computers, 65(2), 548–561. https://doi.org/10.1109/TC.2015.2423677

    Article  MathSciNet  Google Scholar 

  27. Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2012). VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.

    Article  Google Scholar 

  28. Rahman, M. A., Lee, Y., & Koo, I. (2017). EECOR: An energy-efficient cooperative opportunistic routing protocol for underwater acoustic sensor networks. IEEE Access, 5, 14119–14132. https://doi.org/10.1109/ACCESS.2017.2730233

    Article  Google Scholar 

  29. Javaid, N., Majid, A., Sher, A., Khan, W. Z., & Aalsalem, M. Y. (2018). Avoiding void holes and collisions with reliable and interference-aware routing in underwater WSNS. Sensors, 18(9), 3038.

    Article  Google Scholar 

  30. Guan, Q., Ji, F., Liu, Y., Yu, H., & Chen, W. (2019). Distance-vector-based opportunistic routing for underwater acoustic sensor networks. IEEE Internet of Things Journal, 6(2), 3831–3839. https://doi.org/10.1109/JIOT.2019.2891910

    Article  Google Scholar 

  31. Zhang, Y., Zhang, Z., Chen, L., & Wang, X. (2021). Reinforcement learning-based opportunistic routing protocol for underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 70(3), 2756–2770.

    Article  Google Scholar 

  32. Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of Topsis applications. Expert Systems with applications, 39(17), 13051–13069.

    Article  Google Scholar 

  33. Chandavarkar, B. R., & Guddeti, R. M. R. (2016). Simplified and improved multiple attributes alternate ranking method for vertical handover decision in heterogeneous wireless networks. Computer Communications, 83, 81–97.

    Article  Google Scholar 

  34. Vafaei, N., Ribeiro, R. A., & Camarinha-Matos, L. M. (2018). Data normalisation techniques in decision making: Case study with topsis method. International Journal of Information and Decision Sciences, 10(1), 19–38.

    Article  Google Scholar 

  35. Chandavarkar, B. R., & Guddeti, R. M. R. (2015). Simplified and improved analytical hierarchy process aid for selecting candidate network in an overlay heterogeneous networks. Wireless Personal Communications, 83(4), 2593–2606.

    Article  Google Scholar 

  36. Wang, L., & Kuo, G.-S.G. (2012). Mathematical modeling for network selection in heterogeneous wireless networks-a tutorial. IEEE Communications Surveys & Tutorials, 15(1), 271–292.

    Article  Google Scholar 

  37. Rani, S., Ahmed, S. H., Malhotra, J., & Talwar, R. (2017). Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 42–50.

    Article  Google Scholar 

  38. Thi Kim, O. T., Nguyen, V. D., & Hong, C. S. (2014). Which network simulation tool is better for simulating vehicular ad hoc network? Proceedings of the Korean Information Science Conference, 134(1), 930–932.

    Google Scholar 

  39. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.

    Article  Google Scholar 

  40. O’Rourke, M., Basha, E., Detweiler, C (2012) Multi-modal communications in underwater sensor networks using depth adjustment. In Proceedings of the 7th international conference on underwater networks & systems, (pp. 1–5)

  41. Nazareth, P., & Chandavarkar, B. R. (2019). E-var: Enhanced void avoidance routing algorithm for underwater acoustic sensor networks. IET Wireless Sensor Systems, 9(6), 389–398.

    Article  Google Scholar 

  42. Thyagarajan, J., & Kulanthaivelu, S. (2021). A joint hybrid corona based opportunistic routing design with quasi mobile sink for IOT based wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 12(1), 991–1009.

    Article  Google Scholar 

Download references

Funding

The authors thank the Science and Engineering Research Board (SERB), Govt. of India for providing financial support (ref. no. EEQ/2018/001036).

Author information

Authors and Affiliations

Authors

Contributions

 Both authors contributed equally to conception, design, coding, manuscript writing, and review.

Corresponding author

Correspondence to Pradeep Nazareth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for Publication

The authors have no objection to publishing the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazareth, P., Chandavarkar, B.R. Cluster-Based Multi-attribute Routing Protocol for Underwater Acoustic Sensor Networks. Wireless Pers Commun 134, 781–808 (2024). https://doi.org/10.1007/s11277-024-10926-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10926-6

Keywords

Navigation