Skip to main content
Log in

Location-Free Void Avoidance Routing Protocol for Underwater Acoustic Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The field of Underwater Acoustic Sensor Networks (UASNs) is one of the emerging areas of communication due to the number of marine applications. However, UASNs face several fundamental challenges like node movement, high propagation delay, low throughput, high bit-error-rate, low bandwidth, and void-node during communication. Void-node during routing is one of the major problems during routing, which causes high end-to-end delay to route the packets to the sink. The void-node is a fundamental challenge in UASNs and directly influences the UASNs in terms of the end-to-end delay, packet loss, and reliability of the UASNs. The main objective of this paper is to design a void-aware routing protocol referred to as Location-Free Void Avoidance Routing (LFVAR) protocol. It develops void-awareness among nodes in the UASNs and prevents forwarding of the packets to void and trap nodes. Further, LFVAR capable of selecting the efficient void-recovery path for the void-nodes present in the UASNs. Thus, it aims at reducing the end-to-end delay, lower energy consumption, higher packet delivery ratio, and increasing throughput during routing. The LFVAR protocol is implemented in UnetStack and further compared with the state-of-the-art Interference-aware routing (Intar) protocol. The simulation result shows that the packets in LFVAR reach the sink 32.32 % faster, consumes 20.54 % lower energy, and 9.8 % higher packet delivery ratio than Intar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8.

    Article  Google Scholar 

  2. Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE communications magazine, 47(1), 84–89.

    Article  Google Scholar 

  3. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2017). Void-handling techniques for routing protocols in underwater sensor networks: Survey and challenges. IEEE Communications Surveys & Tutorials, 19(2), 800–827.

    Article  Google Scholar 

  4. Shetty, S., Pai, R. M., & Pai, M. M. (2018). Energy efficient message priority based routing protocol for aquaculture applications using underwater sensor network. Wireless Personal Communications, 103(2), 1871–1894.

    Article  Google Scholar 

  5. Tzu-Chiang C., Jia-Lin C., Yue-Fu T., Sha-Pai L. (2013) Greedy geographical void routing for wireless sensor networks. In Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology (WASET) (vol. 78, p. 1248).

  6. Kheirabadi, M. T., & Mohamad, M. M. (2013). Greedy routing in underwater acoustic sensor networks: A survey. International Journal of Distributed Sensor Networks, 9(7), 701834.

    Article  Google Scholar 

  7. Javaid, N., Majid, A., Sher, A., Khan, W. Z., & Aalsalem, M. Y. (2018). Avoiding void holes and collisions with reliable and interference-aware routing in underwater wsns. Sensors, 18(9), 3038.

    Article  Google Scholar 

  8. Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.

    Article  Google Scholar 

  9. Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2012). VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.

    Article  Google Scholar 

  10. Xie, P., Zhou, Z., Peng, Z., Cui, J.-H., & Shi, Z. (2009). Void avoidance in three-dimensional mobile underwater sensor networks. Wireless Algorithms, Systems, and Applications (pp. 305–314). Berlin Heidelberg, Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  11. Xie, P., Zhou, Z., Nicolaou, N., See, A., Cui, J.-H., & Shi, Z. (2010). Efficient vector-based forwarding for underwater sensor networks. EURASIP Journal on Wireless Communications and Networking, 1, 195910.

    Article  Google Scholar 

  12. Haitao, Yu. J., & Nianmin Yao, L. (2015). An adaptive routing protocol in underwater sparse acoustic sensor networks. Ad Hoc Networks, 34, 121–143.

    Article  Google Scholar 

  13. Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2016). Geographic and opportunistic routing for underwater sensor networks. IEEE Transactions on Computers, 65(2), 548–561. https://doi.org/10.1109/TC.2015.2423677

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, S., Bhattacharjee, B., & Banerjee, S. (2005). Efficient geographic routing in multihop wireless networks. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (pp. 230–241)

  15. Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2013). Vapr: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12, 895–908.

    Article  Google Scholar 

  16. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2015). An inherently void avoidance routing protocol for underwater sensor networks. In 2015 International Symposium on Wireless Communication Systems (ISWCS) (pp. 361–365). https://doi.org/10.1109/ISWCS.2015.7454364

  17. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.

    Article  Google Scholar 

  18. Barbeau M., Blouin S., Cervera G., Garcia-Alfaro J., Kranakis E. (2015) Location-free link state routing for underwater acoustic sensor networks. In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) (vol. 6, pp. 1544–1549).

  19. Noh, Y., Lee, U., Lee, S., Wang, P., Vieira, L. F. M., Cui, J., Gerla, M., & Kim, K. (2016). Hydrocast: Pressure routing for underwater sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 333–347.

    Article  Google Scholar 

  20. Yu, H., Yao, N., Wang, T., Li, G., Gao, Z., & Tan, G. (2016). WDFAD-DBR: Weighting depth and forwarding area division DBR routing protocol for UASNs. Ad Hoc Networks, 37, 256–282. https://doi.org/10.1016/j.adhoc.2015.08.023, http://www.sciencedirect.com/science/article/pii/S1570870515001894.

  21. Alasarpanahi, H., Ayatollahitafti, V., & Gandomi, A. (2020). Energy-efficient void avoidance geographic routing protocol for underwater sensor networks. International Journal of Communication Systems, 33(6), e4218.

    Article  Google Scholar 

  22. Gola, K. K., & Gupta, B. (2021). Underwater acoustic sensor networks: An energy efficient and void avoidance routing based on grey wolf optimization algorithm. Arabian Journal for Science and Engineering, 46(4), 3939–3954.

    Article  Google Scholar 

  23. Rahman, Z., Hashim, F., Rasid, M. F. A., Othman, M., & Alezabi, K. A. (2020). Normalized advancement based totally opportunistic routing algorithm with void detection and avoiding mechanism for underwater wireless sensor network. IEEE Access, 8, 67484–67500.

    Article  Google Scholar 

  24. Mhemed, R., Comeau, F., Phillips, W., & Aslam, N. (2012). Void avoidance opportunistic routing protocol for underwater wireless sensor networks. Sensors, 21(6), 1942.

    Article  Google Scholar 

  25. Liu, J., Yu, M., Wang, X., Liu, Y., Wei, X., & Cui, J. (2018). RECRP: An underwater reliable energy-efficient cross-layer routing protocol. Sensors, 18(12), 4148.

    Article  Google Scholar 

  26. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.

    Article  Google Scholar 

  27. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2015). A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, 34, 144–156.

    Article  Google Scholar 

  28. Melodia T., Pompili D., Akyildiz I. F. (2004) Optimal local topology knowledge for energy efficient geographical routing in sensor networks. In IEEE INFOCOM 2004 (vol. 3, pp. 1705–1716) IEEE.

  29. Chitre M. (2020 (accessed June 24, 2020)a) Underwater networks handbook. https://unetstack.net/handbook/unet-handbook.pdf.

  30. Chitre M. (2020 (accessed June 24, 2020)b) fjage documentation. https://buildmedia.readthedocs.org/media/pdf/fjage/dev/fjage.pdf.

  31. Luo, H., Wu, K., Ruby, R., Hong, F., Guo, Z., & Ni, L. M. (2017). Simulation and experimentation platforms for underwater acoustic sensor networks: Advancements and challenges. ACM Computing Surveys (CSUR), 50(2), 28.

    Google Scholar 

  32. Chitre, M., Bhatnagar, R., & Soh, W.-S. (2014a). Unetstack: An agent-based software stack and simulator for underwater networks. In2014 Oceans-St (pp. 1–10). IEEE: John’s.

  33. Chitre, M., Bhatnagar, R., Ignatius, M., & Suman, S. (2014b). Baseband signal processing with unetstack. In 2014 Underwater Communications and Networking (UComms), (pp. 1–4)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Nazareth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors thank the Science and Engineering Research Board (SERB), Govt. of India for providing financial support (ref. no. EEQ/2018/001036).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazareth, P., Chandavarkar, B.R. Location-Free Void Avoidance Routing Protocol for Underwater Acoustic Sensor Networks. Wireless Pers Commun 123, 575–600 (2022). https://doi.org/10.1007/s11277-021-09147-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09147-y

Keywords

Navigation