Skip to main content
Log in

Orthogonal Constant-Amplitude Sequence Families for System Parameter Identification in Spectrally Compact OFDM

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In rectangularly-pulsed orthogonal frequency division multiplexing (OFDM) systems, constant-amplitude (CA) sequences are desirable to construct preamble/pilot waveforms to facilitate system parameter identification (SPI). Orthogonal CA sequences are generally preferred in various SPI applications like random-access channel identification. However, the number of conventional orthogonal CA sequences (e.g., Zadoff–Chu sequences) that can be adopted in cellular communication without causing sequence identification ambiguity is insufficient. Such insufficiency causes heavy performance degradation for SPI requiring a large number of identification sequences. Moreover, rectangularly-pulsed OFDM preamble/pilot waveforms carrying conventional CA sequences suffer from large power spectral sidelobes and thus exhibit low spectral compactness. This paper is thus motivated to develop several order-I CA sequence families which contain more orthogonal CA sequences while endowing the corresponding OFDM preamble/pilot waveforms with fast-decaying spectral sidelobes. Since more orthogonal sequences are provided, the developed order-I CA sequence families can enhance the performance characteristics in SPI requiring a large number of identification sequences over multipath channels exhibiting short-delay channel profiles, while composing spectrally compact OFDM preamble/pilot waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data is available on request.

Notes

  1. A polygon is said to be cyclic if all vertices of this polygon can circumscribe a circle.

  2. Notably, \(\widetilde{\omega }_{0}=\Omega (N)\) and all Hamming weights \(\omega _{m}\) sum to \(\Omega (N)\).

References

  1. LTE (2019). Evolved universal terrestrial radio access (E-UTRA); Physical channels and modulation, 3GPP, Sophia Antipolis Cedex, France, TS 36.211 V15.7.0.

  2. NR (2020). Physical channels and modulation, 3GPP, Sophia Antipolis Cedex, France, TS 38.211 V16.2

  3. Part 22 (2011). Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands. IEEE Standard 802.22-2011.

  4. Minn, H., Bhargava, V. K., & Letaief, K. K. B. (2003). A robust timing and frequency synchronization for OFDM systems. IEEE Transactions on Wireless Communications, 2(4), 822–839.

    Article  Google Scholar 

  5. Kim, K. S., Kim, S. W., Cho, Y. S., & Ahn, J. Y. (2007). Synchronization and cell-search technique using preamble for OFDM cellular systems. IEEE Transactions on Vehicular Technology, 56(6), 3469–3485.

    Article  Google Scholar 

  6. Gul, M. M., Ma, X., & Lee, S. (2015). Timing and frequency synchronization for OFDM downlink transmissions using Zadoff–Chu sequences. IEEE Transactions on Wireless Communications, 14(3), 1716–1729.

    Article  Google Scholar 

  7. Johnson, S., & Dobre, O. A. (2020). Time and carrier frequency synchronization for coherent optical communication: Implementation considerations, measurements, and analysis. IEEE Transactions on Instrumentation and Measurement, 69(8), 5810–5820.

    Article  Google Scholar 

  8. Chung, C.-D., & Chen, W.-C. (2018). Preamble sequence design for spectral compactness and initial synchronization in OFDM. IEEE Transactions on Vehicular Technology, 67(2), 1428–1443.

    Article  Google Scholar 

  9. Chung, C.-D., Chen, W.-C., & Yang, C.-K. (2020). Constant-amplitude sequences for spectrally compact OFDM training waveforms. IEEE Transactions on Vehicular Technology, 69(11), 12974–12991.

    Google Scholar 

  10. Chen, W.-C., & Chung, C.-D. (2017). Spectrally efficient OFDM pilot waveform for channel estimation. IEEE Transactions on Communications, 65(1), 387–402.

    Google Scholar 

  11. Chen, W.-C., Yang, C.-K., Chi, P.-T., & Chung, C.-D. (2019). Pilot sequence design for spectral compactness and channel estimation in OFDM. In Proc. IEEE Veh. Technol. Conf., Honolulu, track 7A (pp. 1–5).

  12. Negi, R., & Cioffi, J. (1998). Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Transactions on Consumer Electronics, 44(3), 1122–1128.

    Article  Google Scholar 

  13. Stoica, P., & Besson, O. (2003). Training sequence design for frequency offset and frequency-selective channel estimation. IEEE Transactions on Communications, 51(11), 1910–1917.

    Article  Google Scholar 

  14. Yu, S., & Lee, J.-W. (2019). Channel sounding for multi-user massive MIMO in distributed antenna system environment. Electronics, 8(1), 1–14.

    Article  Google Scholar 

  15. Kundu, L., Xiong, G., & Cho, J. (2018). Physical uplink control channel design for 5G new radio. In Proc. IEEE 5G World Forum (5GWF), Silicon Valley (pp. 233–238).

  16. Han, J. Y., Jo, O., & Kim, J. (2022). Exploitation of channel-learning for enhancing 5G blind beam index detection. IEEE Transactions on Vehicular Technology, 71(3), 2925–2938.

    Article  Google Scholar 

  17. Kim, T., Bang, I., & Sung, D.-K. (2017). An enhanced PRACH preamble detector for cellular IOT communications. IEEE Communications Letters, 21(12), 2678–2681.

    Article  Google Scholar 

  18. Zhen, L., et al. (2018). Random access preamble design and detection for mobile satellite communication systems. IEEE Journal on Selected Areas in Communications, 36(2), 280–291.

    Article  Google Scholar 

  19. Liang, B., He, Z., Niu, K., Tian, B., & Sun, S. (2013). The research on random access signal detection algorithm in LTE systems. In Proc. IEEE Int. Symp. Microwave, Antenna, Propag. and EMC Technol. for Wireless Commun., Chengdu, China (pp. 115–118).

  20. Mostafa, A.-E., et al. (2021). Aggregate preamble sequence design and detection for massive IOT with deep learning. IEEE Transactions on Vehicular Technology, 70(4), 3800–3816.

    Article  Google Scholar 

  21. Zhen, L., Kong, H., Zhang, Y., Wang, W., & Yu, K. (2021). Efficient collision detection based on Zadoff-Chu sequences for satellite-enabled M2M random access. In Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada (pp. 1–6).

  22. Ali, S., Chen, Z., & Yin, F. (2017). Design of orthogonal uplink pilot sequences for TDD massive MIMO under pilot contamination. Journal of Communications, 12(1), 40–48.

    Google Scholar 

  23. Giordano, L. G., Campanalonga, L., López-Pérez, D., Garcia-Rodriguez, A., Geraci, G., Baracca, P., & Magarini, M. (2018). Uplink sounding reference signal coordination to combat pilot contamination in 5G massive MIMO. In Proc. IEEE Wireless Commun. Netw. Conf., Barcelona, Spain (pp. 1–6).

  24. Yang, F., Cai, P., Qian, H., & Luo, X. (2018). Pilot contamination in massive MIMO induced by timing and frequency errors. IEEE Transactions on Wireless Communications, 17(7), 4477–4492.

    Article  Google Scholar 

  25. Chu, D. C. (1972). Polyphase codes with good periodic correlation properties. IEEE Transactions on Information Theory, 18, 531–532.

    Article  Google Scholar 

  26. Popovic, B. M. (1992). Generalized chirp-like polyphase sequences with optimum correlation properties. IEEE Transactions on Information Theory, 38, 1406–1409.

    Article  MathSciNet  Google Scholar 

  27. Benedetto, J. J., & Donatelli, J. J. (2007). Ambiguity function and frame-theoretic properties of periodic zero-autocorrelation waveforms. IEEE Journal of Selected Topics in Signal Processing, 1(1), 6–20.

    Article  Google Scholar 

  28. Pitaval, R.-A., Popović, B. M., Wang, P., & Berggren, F. (2020). Overcoming 5G PRACH capacity shortfall: Supersets of Zadoff–Chu sequences with low-correlation zone. IEEE Transactions on Communications, 68(9), 5673–5688.

    Article  Google Scholar 

  29. Faulkner, M. (2000). The effect of filtering on the performance of OFDM systems. IEEE Transactions on Vehicular Technology, 49(5), 1877–1884.

    Article  Google Scholar 

  30. Chung, C.-D. (2006). Spectrally precoded OFDM. IEEE Transactions on Communications, 54(12), 2173–2185.

    Article  Google Scholar 

  31. Chen, H.-M., Chen, W.-C., & Chung, C.-D. (2011). Spectrally precoded OFDM and OFDMA with cyclic prefix and unconstrained guard ratios. IEEE Transactions on Wireless Communications, 10(5), 1416–1427.

    Article  Google Scholar 

  32. Ma, M., Huang, X., Jiao, B., & Guo, Y. J. (2011). Optimal orthogonal precoding for power leakage suppression in DFT-based systems. IEEE Transactions on Communications, 59(3), 844–853.

    Article  Google Scholar 

  33. Chung, C.-D., & Chen, K.-W. (2017). Spectrally precoded OFDM without guard insertion. IEEE Transactions on Vehicular Technology, 66(1), 107–121.

    Google Scholar 

  34. Hussain, K., & Lopez-Valcarce, R. (2022). Joint precoder and window design for OFDM sidelobe suppression. IEEE Communications Letters, 26(12), 3044–3048.

    Article  Google Scholar 

  35. Andrews, G. E. (1998). The theory of partitions. Cambridge University Press.

    Google Scholar 

  36. Chase, N. M. (2004). Global structure of integer partitions sequences. Electronic Journal of Combinatorics, 1, 1–25.

    Google Scholar 

  37. Knuth, D. E. (2005). The art of computer programming (Vol. 4). Addison-Wesley.

    Google Scholar 

  38. Foggia, A. M. (2019). Massively parallel approaches to frustrated quantum magnets. Master in High Performance Computing, 4, 1–46.

    Google Scholar 

  39. Lu, S.-H., Chung, C.-D., & Chen, W.-C. (2023). Simultaneous channel estimation in MIMO OFDM systems using constant-amplitude sequences. In Proc. IEEE Veh. Technol. Conf., Hong Kong (pp. 1–7).

  40. Pinelis, I. (2005). Cyclic polygons with given edge lengths: Existence and uniqueness. Journal of Geometry, 82(1–2), 156–171.

    Article  MathSciNet  Google Scholar 

  41. Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). McGraw-Hill.

    Google Scholar 

  42. Rappaport, T. S. (2001). Wireless communications. Prentice Hall.

    Google Scholar 

  43. NR (2020). Study on channel model for frequencies from 0.5 to 100 GHz, 3GPP, Sophia Antipolis Cedex, France, TS 38.901 V16.1.

Download references

Funding

The work was supported by the National Science and Technology Council of Taiwan, under Grants NSTC 112-2221-E-002-167-MY3 and NSTC 112-2221-E-027-074.

Author information

Authors and Affiliations

Authors

Contributions

S.-H. Lu, C.-D. Chung, and W.-C. Chen wrote the main manuscript text. S.-H. Lu and W.-C. Chen prepared Figs. 14. All authors have contributed to the proposal of various order-I CA sequence families applied to random access applications, and all authors reviewed the manuscript.

Corresponding author

Correspondence to Char-Dir Chung.

Ethics declarations

Conflict of interest

Authors have no conflict or competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

(A) Proof of Lemma 1: Consider two M-tuples \(\textbf{1}_{m}\) and \(\textbf{x}=[x_{m};m\in \mathcal {Z}_{M}]\) where all entries \(x_{m}\) are integers greater than one and \(\textbf{1}_{m}\) contains one at the m-th entry and \(M-1\) zeros elsewhere. With (11), \(f(\textbf{x}^{t}+k_{m} \textbf{1}_{m}^{t})-f(\textbf{x}^{t})\) is given by

$$\begin{aligned}&f(\textbf{x}^{t}+k_{m}\textbf{1}_{m}^{t})-f(\textbf{x}^{t}) \\&\quad =\frac{(x_{m}+k_{m})\prod _{i\ne m}x_{i}-1}{(x_{m}+k_{m}-1)\prod _{i\ne m}(x_{i}-1)}-\frac{\prod _{i}x_{i}-1}{ \prod _{i}(x_{i}-1)} \\&\quad =\frac{1}{\prod _{i\ne m}(x_{i}-1)}\left[ \frac{(x_{m}+k_{m})\prod _{i\ne m}x_{i}-1}{x_{m}+k_{m}-1}-\frac{\prod _{i}x_{i}-1}{ x_{m}-1}\right] \\&\quad =\frac{k_{m}(1-\prod _{i\ne m}x_{i})}{(x_{m}+k_{m}-1)\prod _{i}(x_{i}-1)} \end{aligned}$$

for \(m\in \mathcal {Z}_{M}\) and it is negative when \(k_{m}\) is a positive integer. Thus, \(f(\textbf{x}^{t}+k_{m}\textbf{1}_{m}^{t})<f(\textbf{x}^{t})\) if the integer \(k_{m}\) is positive and obviously \(f(\textbf{x}^{t}+k_{m} \textbf{1}_{m}^{t})=f(\textbf{x}^{t})\) if \(k_{m}=0\).

Next, define another M-tuple \(\textbf{k}=\textbf{b}-\textbf{a}\) and express \(\textbf{b}\) in terms of \(\textbf{a}\) and \(\textbf{k}\) as

$$\begin{aligned} \textbf{b}=\textbf{a}+\textbf{k}=\textbf{a}+\sum _{m=0}^{M-1}k_{m} \textbf{1}_{m} \end{aligned}$$

where all integer-valued entries \(k_{m}\) in \(\textbf{k}=[k_{m};m\in \mathcal { Z}_{M}]\) are nonnegative and all integer-valued entries \(a_{m}\) and \(b_{m}\) in \(\textbf{a}=[a_{m};m\in \mathcal {Z}_{M}]\) and \(\textbf{b}=[b_{m};m\in \mathcal {Z}_{M}]\) are greater than one. With \(f(\textbf{x}^{t}+k_{m}\textbf{1 }_{m}^{t})<f(\textbf{x}^{t})\) for a positive \(k_{m}\), we have

$$\begin{aligned} f(\textbf{b}^{t})\le f(\textbf{a}^{t}+\sum _{m=0}^{M-2}k_{m}\textbf{ 1}_{m}^{t})\le \cdots \le f(\textbf{a}^{t}+k_{0}\textbf{1}_{0}^{t})\le f( \textbf{a}^{t}). \end{aligned}$$

Thus, \(f(\textbf{a}^{t})\ge f(\textbf{b}^{t})\) if \(1<a_{n}\le b_{n}\) for all \(n\in \mathcal {Z}_{M}\), and \(f(\textbf{a}^{t})>f(\textbf{b}^{t})\) if \(1<a_{n}<b_{n}\) for some \(n\in \mathcal {Z}_{M}\) and \(1<a_{m}\le b_{m}\) for all \(m\in \mathcal {Z}_{M}-\{n\}\). This completes the proof.

(B) Proof of Lemma 2: With (11), \(f([P_{a},P_{d}])\times f([P_{b},P_{c}])-f([P_{a},P_{c}])\times f([P_{b},P_{d}])\) is given by

$$\begin{aligned}&\frac{(P_{a}P_{d}-1)(P_{b}P_{c}-1)-(P_{a}P_{c}-1)(P_{b}P_{d}-1)}{ (P_{a}-1)(P_{b}-1)(P_{c}-1)(P_{d}-1)} \nonumber \\&\quad =\frac{P_{a}P_{c}+P_{b}P_{d}-P_{a}P_{d}-P_{b}P_{c}}{ (P_{a}-1)(P_{b}-1)(P_{c}-1)(P_{d}-1)} \nonumber \\&\quad =\frac{(P_{b}-P_{a})(P_{d}-P_{c})}{(P_{a}-1)(P_{b}-1)(P_{c}-1)(P_{d}-1)}. \end{aligned}$$
(17)

Similarly, \(f([P_{a},P_{c}])\times f([P_{b},P_{d}])-f([P_{a},P_{b}])\times f([P_{c},P_{d}])\) is given by

$$\begin{aligned} \frac{(P_{d}-P_{a})(P_{c}-P_{b})}{(P_{a}-1)(P_{b}-1)(P_{c}-1)(P_{d}-1)}. \end{aligned}$$
(18)

When \(1<P_{a}\le P_{b}\le P_{c}\le P_{d}\), (17) and (18) are both nonnegative. This completes the proof.

(C) Proof of Lemma 3: With (11), \(f([P_{a},P_{b},P_{c}])-f([P_{a},P_{d}])\times f([P_{b},P_{c}])\) is given by

$$\begin{aligned}&\frac{P_{a}P_{b}P_{c}-1}{(P_{a}-1)(P_{b}-1)(P_{c}-1)} \nonumber \\&\qquad -\frac{(P_{a}P_{d}-1)(P_{b}P_{c}-1)}{(P_{a}-1)(P_{b}-1)(P_{c}-1)(P_{d}-1)} \nonumber \\&\quad =\frac{P_{a}P_{d}+P_{b}P_{c}-P_{a}P_{b}P_{c}-P_{d}}{ (P_{a}-1)(P_{b}-1)(P_{c}-1)(P_{d}-1)} \nonumber \\&\quad =\frac{(P_{a}-1)(P_{d}-P_{b}P_{c})}{(P_{a}-1)(P_{b}-1)(P_{c}-1)(P_{d}-1)} \end{aligned}$$
(19)

which is nonnegative when \(P_{b}P_{c}\le P_{d}\) and \(1<P_{a}\le P_{b}\le P_{c}\le P_{d}\). This completes the proof.

(D) Gosper’s Hack Algorithm: Gosper’s Hack algorithm in [37, 38] can assist in finding all possible factor sets \(\{A_{m};m\in \mathcal {Z}_{\Omega (N)-\kappa }\}\) which satisfy \(\prod _{m=0}^{\Omega (N)-\kappa -1}A_{m}=\prod _{m=0}^{\Omega (N)-1}P_{m}\) and are all characterized by an admissible pattern \(\varvec{\omega }=[\omega _{m};m\in \mathcal {Z}_{\Omega (N)-\kappa }]\) with \(\omega _{m}=\Omega (A_{m})\). To find all possible factor sets \(\{A_{m};m\in \mathcal {Z}_{\Omega (N)-\kappa }\}\), we aim to (i) first find all possible partitions of \(\{P_{m};m\in \mathcal {Z}_{\Omega (N)}\}\) into \(\Omega (N)-\kappa\) prime factor subsets \(\{P_{m}^{(n)};m\in \mathcal {Z}_{\omega _{n}}\}\) for \(n\in \mathcal {Z}_{\Omega (N)-\kappa }\), where \(P_{0}^{(n)}\le P_{1}^{(n)}\le \cdots \le P_{\omega _{n}-1}^{(n)}\), with the aid of Gosper’s Hack algorithm and (ii) then compose all possible factor sets by computing \(A_{n}=\prod _{m=0}^{\omega _{n}-1}P_{m}^{(n)}\) accordingly. To describe step (i), we define \(\widetilde{ \varvec{\omega }}=[\widetilde{\omega }_{n};n\in \mathcal {Z}_{\Omega (N)-\kappa }]\) with \(\widetilde{\omega }_{n}\triangleq \sum _{m=n}^{\Omega (N)-\kappa -1}\omega _{m}\) and \(\textbf{b}^{(n)}\triangleq [b_{m}^{(n)};m\in \mathcal {Z}_{\widetilde{\omega }_{n}}]\) as a binary codeword with length \(\widetilde{\omega }_{n}\) and Hamming weight \(\omega _{n}\).Footnote 2 For a given \(\varvec{\omega }\), there are a total of \(\prod _{n\in \mathcal {Z}_{\Omega (N)-\kappa }}\left( \begin{array}{c} \widetilde{\omega }_{n}\\ {\omega _{n}}\end{array}\right)\) possible binary codeword sets for \(\{ \textbf{b}^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\) and they can be exclusively obtained by Gosper’s Hack algorithm in Fig. 3 [38, Algorithm 3.1 ]. To obtain a partition of \(\{P_{m};m\in \mathcal {Z}_{\Omega (N)}\}\) for each given \(\{\textbf{b}^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\), a binary codeword set \(\{\widetilde{\textbf{b}}^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\) is converted from \(\{\textbf{b} ^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\) by the proposed codeword conversion algorithm in Fig. 4, in a way that each codeword \(\widetilde{ \textbf{b}}^{(n)}\triangleq [\widetilde{b}_{m}^{(n)};m\in \mathcal {Z}_{\Omega (N)}]\) contains \(\Omega (N)\) entries and the same Hamming weight as \(\textbf{b}^{(n)}\). Notably, there are a total of \(\Omega (N)\) ones in \(\{ \widetilde{\textbf{b}}^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\). From \(\{\widetilde{\textbf{b}}^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\), a partition of \(\{P_{m};m\in \mathcal {Z}_{\Omega (N)}\}\) into \(\Omega (N)-\kappa\) prime factor subsets \(\{P_{\widetilde{m}}^{(n)};\widetilde{m} \in \mathcal {Z}_{\omega _{n}}\}\) can be thus specified by

$$\begin{aligned} P_{\varepsilon _{m}^{(n)}}^{(n)}=P_{m}\quad \text {if}\quad \widetilde{b}_{m}^{(n)}=1 \end{aligned}$$
(20)

for \(n\in \mathcal {Z}_{\Omega (N)-\kappa }\) and \(m\in \Omega (N)\), where \(\varepsilon _{m}^{(n)}=\sum _{m^{\prime }=0}^{m}\widetilde{b}_{m^{\prime }}^{(n)}-1\). Accordingly, all possible partitions of \(\{P_{m};m\in \mathcal {Z}_{\Omega (N)}\}\) and thereby all possible factor sets for \(\{A_{m};m\in \mathcal {Z}_{\Omega (N)-\kappa }\}\) can be found in steps (i) and (ii) from \(\prod _{n\in \mathcal {Z}_{\Omega (N)-\kappa }}\left( \begin{array}{c}{\widetilde{\omega }_{n}}\\ {\omega _{n}}\end{array}\right)\) possible codeword sets for \(\{\textbf{b}^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\).

Fig. 3
figure 3

Gosper’s Hack algorithm

Fig. 4
figure 4

Codeword conversion algorithm

Consider the example with \(\Omega (N)=6\), \(\kappa =3\), and a given pattern \(\varvec{\omega }=[3,2,1]^{t}\). Such \(\varvec{\omega }\) determines \(\widetilde{ \varvec{\omega }}= [6,3,1]^{t}\) uniquely and thus fixes the lengths 6, 3, 1 and Hamming weights 3, 2, 1 of the binary codeword set \(\{\textbf{b}^{(0)}, \textbf{b}^{(1)},\textbf{b}^{(2)}\}\) accordingly. From Gosper’s Hack algorithm, there are \(\left( \begin{array}{c} 6\\ 3\end{array}\right) \left( \begin{array}{c} 3\\ 2 \end{array}\right) \left( \begin{array}{c} 1 \\ 1\end{array}\right) =60\) possible codeword sets meeting such length and weight distributions. For example, \(\textbf{b}^{(0)}=[0,1,0, 1,1,0]^{t}\), \(\textbf{b}^{(1)}=[0,1,1]^{t}\) and \(\textbf{b}^{(2)}=[1]\) form one possible codeword set. From the codeword conversion algorithm, the corresponding codeword set \(\{\widetilde{\textbf{b} }^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\) is obtained as \(\widetilde{ \textbf{b}}^{(0)}=[0,1,0,1,1,0]^{t}\), \(\widetilde{\textbf{b}} ^{(1)}=[0,0,1,0,0,1]^{t}\) and \(\widetilde{\textbf{b}} ^{(2)}=[1,0,0,0,0,0]^{t}\). In turns, such \(\{\widetilde{\textbf{b}} ^{(n)};n\in \mathcal {Z}_{\Omega (N)-\kappa }\}\) determines a partition of \(\{P_{m};m\in \mathcal {Z}_{\Omega (N)}\}\) into \(\{P_{m}^{(0)};m\in \mathcal {Z} _{\omega _{0}}\}=\{P_{1},P_{3},P_{4}\}\), \(\{P_{m}^{(1)};m\in \mathcal {Z} _{\omega _{1}}\}=\{P_{2},P_{5}\}\), and \(\{P_{m}^{(2)};m\in \mathcal {Z} _{\omega _{2}}\}=\{P_{0}\}\). The corresponding \(\{A_{m};m\in \mathcal {Z} _{\Omega (N)-\kappa }\}\) becomes \(\{P_{1}P_{3}P_{4},P_{2}P_{5},P_{0}\}\). All 60 possible partitions can be thus obtained from 60 codeword sets \(\{ \textbf{b}^{(0)},\) \(\textbf{b}^{(1)},\textbf{b}^{(2)}\}\) exclusively obtained by Gosper’s Hack algorithm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, SH., Chung, CD., Chen, WC. et al. Orthogonal Constant-Amplitude Sequence Families for System Parameter Identification in Spectrally Compact OFDM. Wireless Pers Commun 134, 685–719 (2024). https://doi.org/10.1007/s11277-024-10909-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10909-7

Keywords

Navigation