Skip to main content
Log in

Reconfigurable Antenna for Wireless Communication: Recent Developments, Challenges and Future

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

A Correction to this article was published on 01 November 2023

This article has been updated

Abstract

The growth in the popularity of reconfigurable antennas has been observed recently. Because of the fast progress of wireless communication technology in current wireless applications with large data rates, multimode and cognitive radio operations are implemented with reconfigurable antennas. These antennas are well-suited for wireless applications, including 4G and 5G mobile devices, due to their versatile capabilities. These include requiring minimal front-end processing, providing strong isolation, and effectively rejecting signals outside the desired frequency bands. In this article, we reviewed some of the latest reconfigurable antenna designs that have recently been proposed for use in wireless communications, including cognitive-ratio, MIMO, ultra-wideband, and 4G and 5G mobile terminals. It investigated the fundamental properties and characteristics of reconfigurable antennas with single and multiple reconfigurability modes. This study examines related publications on reconfigurable antennas across a variety of platforms to determine methodologies. In the present year, the examination of reconfigurable antennas involves addressing various complexities in their development and analysis. The existing methodologies exhibit certain advantages and constraints, which are studied upon. Furthermore, emerging research hurdles in this domain are identified and proposed. Each concept and its design techniques are analysed, with merits, limitations, and future improvement highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All the materials and data used are cited and already kept in reference section.

Change history

  • 07 January 2024

    The original version of this article was revised: the author name Smir Trapasiya was corrected to Samir Trapasiya.

  • 08 January 2024

    A Correction to this paper has been published: https://doi.org/10.1007/s11277-023-10825-2

References

  1. Chen, Z. N., Liu, D., Nakano, H., Qing, X., & Zwick, T. (2016). Handbook of antenna technologies (vol. 1–4). https://doi.org/10.1007/978-981-4560-44-3

  2. Nadeem, Q. U. A., Kammoun, A., Debbah, M., & Alouini, M. S. (2018). Design of 5G full dimension massive MIMO systems. IEEE Transactions on Communications, 66(2), 726–740. https://doi.org/10.1109/TCOMM.2017.2762685

    Article  Google Scholar 

  3. Array, M., Band, K., Bai, K., & Govardhani, B. (2019). Design and analysis of high gain linear rectangular. Wireless Personal Communications, 78, 9. https://doi.org/10.1007/s11277-019-06940-8

    Article  Google Scholar 

  4. Peroulis, D., Sarabandi, K., & Katehi, L. P. B. (2005). Design of reconfigurable slot antennas. IEEE Transactions on Antennas and Propagation, 53(2), 645–654. https://doi.org/10.1109/TAP.2004.841339

    Article  Google Scholar 

  5. Christodoulou, C. G., Tawk, Y., Lane, S. A., & Erwin, S. R. (2012). Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 100(7), 2250–2261. https://doi.org/10.1109/JPROC.2012.2188249

    Article  Google Scholar 

  6. Chen, S. H., Row, J. S., & Wong, K. L. (2007). Reconfigurable square-ring patch antenna with pattern diversity. IEEE Transactions on Antennas and Propagation, 55(2), 472–475. https://doi.org/10.1109/TAP.2006.889950

    Article  Google Scholar 

  7. Kim, B., Pan, B., Nikolaou, S., Kim, Y. S., Papapolymerou, J., & Tentzeris, M. M. (2008). A novel single-feed circular microstrip antenna with reconfigurable polarization capability. IEEE Transactions on Antennas and Propagation, 56(3), 630–638. https://doi.org/10.1109/TAP.2008.916894

    Article  Google Scholar 

  8. Song, S., & Murch, R. D. (2014). An efficient approach for optimizing frequency reconfigurable pixel antennas using genetic algorithms. IEEE Transactions on Antennas and Propagation, 62(2), 609–620. https://doi.org/10.1109/TAP.2013.2293509

    Article  Google Scholar 

  9. Antenna Theory—Analysis and Design [Cropped fixed] (Constantine A. Balanis) (2nd Ed) John Will.pdf.

  10. Bernhard, J. T. (2007). Reconfigurable antennas (vol. 4). https://doi.org/10.2200/S00067ED1V01Y200707ANT004

  11. Verma, R. K., & Srivastava, D. K. (2020). Design and analysis of triple - band rectangular microstrip antenna loaded with notches and slots for wireless. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07452-6

    Article  Google Scholar 

  12. Tripathi, D., Ramesh, D. K. S., & Verma, K. (2021). Bandwidth enhancement of slotted rectangular wideband microstrip antenna for the application of WLAN/WiMAX. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08257-x

    Article  Google Scholar 

  13. Sheik, B. A., Sridevi, P. V., & Rama Raju, P. V. (2021). A compact wideband rectangular microstrip antenna to the S and C bands applications. Wireless Personal Communications, 121(1), 597–619. https://doi.org/10.1007/s11277-021-08652-4

    Article  Google Scholar 

  14. Patch, M., Umts, P. C. S., & Imt, W. (2021). Wide dual band asymmetrical I—Shape rectangular. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08962-7

    Article  Google Scholar 

  15. Salleh, S. M., Jusoh, M., Ismail, A. H., et al. (2017). Textile antenna with simultaneous frequency and polarization reconfiguration for WBAN. IEEE Access, 6, 7350–7358. https://doi.org/10.1109/ACCESS.2017.2787018

    Article  Google Scholar 

  16. Clemente, A., Laurent, D., Sauleau, R., Potier, P., & Pouliguen, P. (2011) 1-bit reconfigurable unit-cell for transmit-array applications in X-band. In IEEE antennas propagation society AP-S international symposium (pp. 684–687). https://doi.org/10.1109/APS.2011.5996804

  17. Hussain, R., Sharawi, M. S., & Shamim, A. (2018). An integrated four-element slot-based MIMO and a UWB sensing antenna system for CR platforms. IEEE Transactions on Antennas and Propagation, 66(2), 978–983. https://doi.org/10.1109/TAP.2017.2781220

    Article  Google Scholar 

  18. Kamakshi, J. A. A., & Ashish, K. (2012) Ultra wideband co-planer microstrip patch antenna for wireless applications. https://doi.org/10.1007/s11277-012-0638-y

  19. Kumar, P., Abhas, S. S., Varun, K., Neeraj, G., & Gupta, K. (2021). A novel ultra wideband antenna design and parameter tuning using hybrid optimization strategy. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08942-x

    Article  Google Scholar 

  20. Tawk, Y., Albrecht, A. R., Hemmady, S., Balakrishnan, G., & Christodoulou, C. G. (2010). Optically pumped frequency reconfigurable antenna design. IEEE Antennas and Wireless Propagation Letters, 9, 280–283. https://doi.org/10.1109/LAWP.2010.2047373

    Article  Google Scholar 

  21. Hannula, J. M., Saarinen, T., Holopainen, J., & Viikari, V. (2017). Frequency reconfigurable multiband handset antenna based on a multichannel transceiver. IEEE Transactions on Antennas and Propagation, 65(9), 4452–4460. https://doi.org/10.1109/TAP.2017.2725384

    Article  Google Scholar 

  22. Hussain, N., Awan, W. A., Naqvi, S. I., et al. (2020). A compact flexible frequency reconfigurable antenna for heterogeneous applications. IEEE Access, 8, 173298–173307. https://doi.org/10.1109/ACCESS.2020.3024859

    Article  Google Scholar 

  23. Awan, W. A., Hussain, N., Naqvi, S. A., et al. (2020). A miniaturized wideband and multi-band on-demand reconfigurable antenna for compact and portable devices. AEU - International Journal of Electronics and Communications, 122, 153266. https://doi.org/10.1016/j.aeue.2020.153266

    Article  Google Scholar 

  24. Bharathi, A., & Gosula, R. S. R. (2021). A novel compact multiband reconfigurable WLAN MIMO antenna. IETE Journal of Research. https://doi.org/10.1080/03772063.2020.1869598

    Article  Google Scholar 

  25. Hakimi, S. E. S. (2014). An equivalent circuit model for broadband modified rectangular microstrip-fed monopole antenna (pp. 1363–1375). https://doi.org/10.1007/s11277-013-1585-y

  26. Ghaffar, A., Li, X. J., Awan, W. A., Nazeri, A. H., Hussain, N., & Seet, B. C. (2021). Compact multiband multimode frequency reconfigurable antenna for heterogeneous wireless applications. International Journal of RF and Microwave Computer-Aided Engineering, 31(7), 66. https://doi.org/10.1002/mmce.22659

    Article  Google Scholar 

  27. Al Ahmad, M., Kabeer, S., Sanad, A. A., & Olule, L. J. A. (2021). Compact single-varactor diode frequency-reconfigurable microstrip patch antenna. IET Microwaves, Antennas Propagation. https://doi.org/10.1049/mia2.12117

    Article  Google Scholar 

  28. Jin, G., Deng, C., Yang, J., Xu, Y., & Liao, S. (2019). A new differentially-fed frequency reconfigurable antenna for WLAN and sub-6GHz 5G applications. IEEE Access, 7, 56539–56546. https://doi.org/10.1109/ACCESS.2019.2901760

    Article  Google Scholar 

  29. Dildar, H., Althobiani, F., Ahmad, I., et al. (2021). Design and experimental analysis of multiband frequency reconfigurable antenna for 5g and sub-6 ghz wireless communication. Micromachines, 12(1), 1–15. https://doi.org/10.3390/mi12010032

    Article  Google Scholar 

  30. Boufrioua, A. (2020). Frequency reconfigurable antenna designs using PIN diode for wireless communication applications. Wireless Personal Communications, 110(4), 1879–1885. https://doi.org/10.1007/s11277-019-06816-x

    Article  Google Scholar 

  31. Kantemur, A., Tak, J., Siyari, P., Abdelrahman, A. H., Krunz, M., & Xin, H. (2020). A novel compact reconfigurable broadband antenna for cognitive radio applications. IEEE Transactions on Antennas and Propagation, 68(9), 6538–6547. https://doi.org/10.1109/TAP.2020.2996803

    Article  Google Scholar 

  32. Subbaraj, S., Kanagasabai, M., Gulam Nabi Alsath, M., et al. (2020). A compact frequency-reconfigurable antenna with independent tuning for hand-held wireless devices. IEEE Transactions on Antennas and Propagation, 68(2), 1151–1154. https://doi.org/10.1109/TAP.2019.2938668

    Article  Google Scholar 

  33. Rao, K. S., Kumar, P. A., Guha, K., et al. (2018). Design and simulation of fixed–fixed flexure type RF MEMS switch for reconfigurable antenna. Microsystem Technologies, 2021, 66. https://doi.org/10.1007/s00542-018-3983-2

    Article  Google Scholar 

  34. Ghaffar, A., Li, X. J., Awan, W. A., Naqvi, S. I., & Hussain, N. (2021). Design and realization of a frequency reconfigurable multimode antenna for ISM, 5G-sub-6-GHz, and S-band applications. Applied Sciences, 11, 1635.

    Article  Google Scholar 

  35. Li, K., & Shi, Y. (2018). A pattern reconfigurable MIMO antenna design using characteristic modes. IEEE Access, 6, 43526–43534. https://doi.org/10.1109/ACCESS.2018.2863250

    Article  Google Scholar 

  36. Lu, Z. L., Yang, X. X., & Tan, G. N. (2014). A wideband printed tapered-slot antenna with pattern reconfigurability. IEEE Antennas and Wireless Propagation Letters, 13(1), 1613–1616. https://doi.org/10.1109/LAWP.2014.2342737

    Article  Google Scholar 

  37. Hossain, M. A., Bahceci, I., & Cetiner, B. A. (2017). Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications. IEEE Transactions on Antennas and Propagation, 65(12), 6444–6452. https://doi.org/10.1109/TAP.2017.2757962

    Article  Google Scholar 

  38. Deng, W. Q., Yang, X. S., Shen, C. S., Zhao, J., & Wang, B. Z. (2017). A dual-polarized pattern reconfigurable Yagi Patch antenna for microbase stations. IEEE Transactions on Antennas and Propagation, 65(10), 5095–5102. https://doi.org/10.1109/TAP.2017.2741022

    Article  Google Scholar 

  39. Ahn, B., Jo, H. W., Yoo, J. S., Yu, J. W., & Lee, H. L. (2019). Pattern reconfigurable high gain spherical dielectric resonator antenna operating on higher order mode. IEEE Antennas and Wireless Propagation Letters, 18(1), 128–132. https://doi.org/10.1109/LAWP.2018.2882871

    Article  Google Scholar 

  40. Ouyang, J., Pan, Y. M., & Zheng, S. Y. (2018). Center-fed unilateral and pattern reconfigurable planar antennas with slotted ground plane. IEEE Transactions on Antennas and Propagation, 66(10), 5139–5149. https://doi.org/10.1109/TAP.2018.2860046

    Article  Google Scholar 

  41. Esmail, B. A., Majid, H. A., Abidin, Z. Z., et al. (2020). Reconfigurable radiation pattern of planar antenna using metamaterial for 5G applications. Materials, 13(3), 1–15. https://doi.org/10.3390/ma13030582

    Article  Google Scholar 

  42. Srivastava, H., Singh, A., Rajeev, A., & Tiwari, U. (2020). Bandwidth and gain enhancement of rectangular microstrip patch antenna (RMPA) using slotted array technique. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07388-x

    Article  Google Scholar 

  43. Su, C., Jin, H., Li, C., Liao, Y., & Chin, K. (2021). Pattern-reconfigurable dual-band dipole antenna array with four switchable beams for full coverage in horizontal plane. IET Microwaves, Antennas and Propagation, 15(1), 21–32. https://doi.org/10.1049/mia2.12020

    Article  Google Scholar 

  44. Rahmani, F., Amar Touhami, N., Belbachir Kchairi, A., & Taher, N. (2019). Circular planar antenna with reconfigurable radiation pattern using PIN diodes. Procedia Manufacturing, 2020(46), 760–765. https://doi.org/10.1016/j.promfg.2020.04.001

    Article  Google Scholar 

  45. Faizal Ismail, M., Kamal, M., Rijal Hamid, M., et al. (2021). Dual-band pattern reconfigurable antenna using electromagnetic band-gap structure. AEU International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2020.153571

    Article  Google Scholar 

  46. Shamsinejad, S., & Member, S. (2019). Pattern reconfigurable cubic slot antenna. IEEE Access, 7, 64401–64410. https://doi.org/10.1109/ACCESS.2019.2917145

    Article  Google Scholar 

  47. Santamaria, L. (2021). Antenna for IoT applications. https://doi.org/10.1109/OJAP.2021.3073104

  48. Zhang, Z., & Cao, S. (2021). Azimuth-pattern reconfigurable planar antenna design using characteristic mode analysis. IEEE Access, 9, 60043–60051. https://doi.org/10.1109/ACCESS.2021.3073706

    Article  Google Scholar 

  49. Gangwar, R. K. (2021). Network (pp. 62–68). https://doi.org/10.1049/mia2.12029

  50. Ding, X., Zhao, Z., Member, S., Yang, Y., & Nie, Z. (2019). A low-profile and stacked patch antenna for pattern-reconfigurable a low-profile and stacked patch antenna for pattern-reconfigurable applications. IEEE transactions on antennas and propagation. https://doi.org/10.1109/TAP.2019.2911238

    Article  Google Scholar 

  51. Wu, F., Member, S., & Luk, K. M. (2017). Wideband tri-polarization reconfigurable magneto-electric dipole antenna. IEEE Transactions on Antennas and Propagation, 65, 1633. https://doi.org/10.1109/TAP.2017.2670521

    Article  MathSciNet  Google Scholar 

  52. Lin, W., Chen, S., Ziolkowski, R. W., & Guo, Y. J. (2018). Reconfigurable, wideband, low-profile, circularly polarized antenna and array enabled by an artificial magnetic conductor ground. IEEE Transactions on Antennas and Propagation. https://doi.org/10.1109/TAP.2018.2790437

    Article  Google Scholar 

  53. Nguyen, B. D., & Pichot, C. (2018). Reconfigurable transmitarrays. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2018.2881555

    Article  Google Scholar 

  54. Tang, M. C., Wu, Z., Shi, T., & Ziolkowski, R. W. (2018). Electrically small, low-profile, planar, huygens dipole antenna with quad-polarization diversity. IEEE Transactions on Antennas and Propagation, 66(12), 6772–6780. https://doi.org/10.1109/TAP.2018.2869645

    Article  Google Scholar 

  55. Chung, K. L., Xie, S., Li, Y., Liu, R., Ji, S., & Zhang, C. (2018). A circular-polarization reconfigurable meng-shaped patch antenna. IEEE Access, 6, 51419–51428. https://doi.org/10.1109/ACCESS.2018.2869410

    Article  Google Scholar 

  56. Jin, G., Li, L., Wang, W., & Liao, S. (2020). Broadband polarisation reconfigurable antenna based on crossed dipole and parasitic elements for LTE/sub-6 GHz 5G and WLAN applications. IET Microwaves, Antennas and Propagation, 14(12), 1469–1475. https://doi.org/10.1049/iet-map.2019.1137

    Article  Google Scholar 

  57. Tran, H. U. Y. H., Bui, C. D., & Nguyen-trong, N. (2021). A wideband non-uniform metasurface-based circularly polarized reconfigurable antenna. IEEE Access, 9, 42325–42332.

    Article  Google Scholar 

  58. Saraswat, K., & Harish, A. R. (2020). Dual-band polarisation reconfigurable grounded fractal slot antenna. IET Microwaves, Antennas & Propagation, 14, 1786–1790. https://doi.org/10.1049/iet-map.2020.0542

    Article  Google Scholar 

  59. Chenna, P., Kumar, P., & Rao, P. T. (2019). Design of reconfigurable circularly polarised double folded inverted-L antenna with rectangular ground plane using HFSS. In Ucccn 2019 (pp. 229–234). https://doi.org/10.1049/iet-net.2019.0218

  60. Bhattacharjee, A., Dwari, S., Mandal, M. K., & Member, S. (2019). Polarization reconfigurable compact monopole antenna with wide effective bandwidth. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2019.2908661

    Article  Google Scholar 

  61. Dhara, R., Jana, S. K., & Mitra, M. (2020). Tri-band circularly polarized monopole antenna for wireless communication. Application, 63(4), 213–222. https://doi.org/10.3103/S0735272720040044

  62. Virothu, S., & Anuradha, M. S. (2021). Broadband CPW FED polarization reconfigurable antenna for universal UHF RFID reader (pp. 1066–1073). https://doi.org/10.21917/ijme.2021.0186

  63. Mabrouk, A. M., Ibrahim, A. A., & Hamed, H. F. A. (2021). Reconfigurable antenna with frequency and beam switching using transformer oil and PIN-diode for microwave applications. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2021.06.099

    Article  Google Scholar 

  64. Nguyen-Trong, N., Hall, L., & Fumeaux, C. (2016). A frequency-and pattern-reconfigurable center-shorted microstrip antenna. IEEE Antennas and Wireless Propagation Letters, 15, 1955–8. https://doi.org/10.1109/LAWP.2016.2544943

    Article  Google Scholar 

  65. Iqbal, A., Smida, A., Mallat, N. K., et al. (2019). Frequency and pattern reconfigurable antenna for emerging wireless communication systems. Electronics, 8(4), 3–14. https://doi.org/10.3390/electronics8040407

    Article  Google Scholar 

  66. Ghaffar, A., Li, X. J., Awan, W. A., et al. (2021). A flexible and pattern reconfigurable antenna with small dimensions and simple layout for wireless communication systems operating over 1.65–2.51 GHz. Electronics, 10(5), 601. https://doi.org/10.3390/electronics100506

    Article  Google Scholar 

  67. Kumar, S., Mithilesh, D., & Lokesh, K. (2018). A rectangular SRR switched slotted microstrip patch. Wireless Personal Communications. https://doi.org/10.1007/s11277-018-5967-z

    Article  Google Scholar 

  68. Palsokar, A. A., & Lahudkar, S. L. (2020). Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode. AEU-International Journal of Electronics and Communications., 125, 153370.

    Google Scholar 

  69. Elsheakh, D. N. (2019). Frequency reconfigurable and radiation pattern steering of monopole antenna based on graphene pads. In 2019 IEEE-APS top conference antennas propagation wireless communications (vol. 2(no. 1), pp. 436–440).

  70. Thanki, P., & Raval, F. (2021). I-shaped frequency and pattern reconfigurable antenna for WiMAX and WLAN applications. Progress in Electromagnetics Research Letters, 97, 149–56.

    Article  Google Scholar 

  71. Chen, J. Y., & Row, J. S. (2021). Frequency reconfigurable antenna with conical radiation pattern and wide tuning range. Progress in Electromagnetics Research Letters, 96, 147–52.

    Article  Google Scholar 

  72. Han, L., Wang, C., Zhang, W., Ma, R., & Zeng, Q. (2018). Design of frequency- and pattern-reconfigurable wideband slot antenna.

  73. Dadel, M., Srivastava, S., & Pati, K. (2016). Design of substrate integrated waveguide (SIW) fed log periodic microstrip array antennas. Wireless Personal Communications. https://doi.org/10.1007/s11277-016-3388-4

    Article  Google Scholar 

  74. Thanki, P., & Raval, F. (2020). Fork-shaped frequency and pattern reconfigurable antenna. International Journal of Communication Systems, 33(17), 1–11. https://doi.org/10.1002/dac.4613

    Article  Google Scholar 

  75. Lavadiya, S. P., Sorathiya, V., Kanzariya, S., et al. (2021). Design and verification of novel low-profile miniaturized pattern and frequency tunable microstrip patch antenna using two PIN diodes. Brazilian Journal of Physics. https://doi.org/10.1007/s13538-021-00951-2

    Article  Google Scholar 

  76. Chandra, K.V. (2019). A novel miniature hexagonal shape switched pattern and frequency reconfigurable antenna (pp. 2–9). https://doi.org/10.1002/dac.4264

  77. Ghaffar, A., Li, X. J., Awan, W. A., Naqvi, A. H., Hussain, N., Alibakhshikenari, M. (2021). A flexible and pattern reconfigurable antenna with small dimensions and simple layout for wireless communication systems operating over 1.65–2.51 GHz. Electronics, 10(5):1–13. https://doi.org/10.3390/electronics10050601

  78. Nguyen-trong, N., Hall, L., & Fumeaux, C. (2015). A frequency- and polarization-reconfigurable stub-loaded microstrip patch antenna. https://doi.org/10.1109/TAP.2015.2477846

  79. Kumari, R., Suri, P., Kaudinya, P., & Katheria, P. S. (2021). A simple semi-circular arc shaped frequency and polarization reconfigurable antenna. In Journal of Physics: Conference Series (Vol. 1921, No. 1, p. 012045). IOP Publishing. https://doi.org/10.1088/1742-6596/1921/1/012045

  80. Chen, D., Yang, W., Che, W., Xue, Q., & Gu, L. (2019). Polarization-reconfigurable and frequency-tunable dipole antenna using active AMC structures. IEEE Access, 7, 77792–77803. https://doi.org/10.1109/ACCESS.2019.2919518

    Article  Google Scholar 

  81. Kumar, B., Mukesh, K., & Khandelwal, K. (2016). Analysis and design of compact high gain microstrip patch antenna with defected ground structure for wireless applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-016-3486-3

    Article  Google Scholar 

  82. Hu, J. U. N., Member, S., Hao, Z., & Member, S. (2018). Design of a frequency and polarization reconfigurable patch antenna with a stable gain. IEEE Access, 6, 68169–68175. https://doi.org/10.1109/ACCESS.2018.2879498

    Article  Google Scholar 

  83. George, U., & Lili, F. (2020). A simple frequency and polarization reconfigurable antenna. Electromagnetics, 40(6), 435–444. https://doi.org/10.1080/02726343.2020.1811940

    Article  Google Scholar 

  84. Patriotis, M., Ayoub, F. N., Tawk, Y., Costantine, J., & Christodoulou, C. G. (2021). A millimeter-wave frequency reconfigurable. IEEE Open Journal of Antennas Propagation, 2, 759–766. https://doi.org/10.1109/OJAP.2021.3090908

    Article  Google Scholar 

  85. Liu, J., Li, J., & Xu, R. (2018). Design of very simple frequency and polarisation reconfigurable antenna with finite ground structure. Electronics Letters, 54(4), 187–8. https://doi.org/10.1049/el.2017.4364

    Article  Google Scholar 

  86. Liu, Y., Wang, Q., Jia, Y., & Zhu, P. (2020). A frequency-and polarization-reconfigurable slot antenna using liquid metal. IEEE Transactions on Antennas and Propagation, 68(11), 7630–5. https://doi.org/10.1109/TAP.2020.2993110

    Article  Google Scholar 

  87. Singh, S., Taylor, J., Zhou, H., Pal, A., Mehta, A., Nakano, H., & Howland, P. (2018). A pattern and polarization reconfigurable liquid metal helical antenna. In 2018 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting (pp. 857–858). IEEE. https://doi.org/10.1109/APUSNCURSINRSM.2018.8608957

  88. Gu, C., Gao, S., Liu, H., et al. (2015). Compact smart antenna with electronic beam-switching and reconfigurable polarizations. IEEE Transactions on Antennas and Propagation, 63(12), 5325–5333. https://doi.org/10.1109/TAP.2015.2490239

    Article  MathSciNet  Google Scholar 

  89. Niture, D. V., Gurame, S. S., & Mahajan, S. P. (2018). A pattern and polarization reconfigurable antenna for WLAN application. In Proceedings of the 8th international advanced computing conference IACC 2018 (pp. 303–308). https://doi.org/10.1109/IADCC.2018.8692086

  90. Yan, Y. D., Jiao, Y. C., & Zhang, C. (2021). Pattern and polarization reconfigurable circularly polarized antenna based on two pairs of planar complementary dipoles. Microwave and Optical Technology Letters, 63(3), 876–882. https://doi.org/10.1002/mop.32661

    Article  Google Scholar 

  91. Malakooti, S. A., & Fumeaux, C. (2020). Comments on “Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots.” IEEE Transactions on Antennas and Propagation, 68(2), 1214–1215. https://doi.org/10.1109/TAP.2019.2955200

    Article  Google Scholar 

  92. Chen, A., & Ning, X. (2021). A pattern and polarization reconfigurable antenna with metasurface. International Journal of RF and Microwave Computer-Aided Engineering, 31(3), 1–11. https://doi.org/10.1002/mmce.22312

    Article  Google Scholar 

  93. Lin, W., Wong, H., & Ziolkowski, R. W. (2018). Circularly polarized antenna with reconfigurable broadside and conical beams facilitated by a mode switchable feed network. IEEE Transactions on Antennas and Propagation, 66(2), 996–1001. https://doi.org/10.1109/TAP.2017.2784452

    Article  Google Scholar 

  94. Hwang, M., Kim, G., Kim, S., & Jeong, N. S. (2021). Origami-inspired radiation pattern and shape reconfigurable dipole array antenna at C-band for CubeSat applications. IEEE Transactions on Antennas and Propagation, 69(5), 2697–2705. https://doi.org/10.1109/TAP.2020.3030908

    Article  Google Scholar 

  95. Yan, Y. D., Jiao, Y. C., Luo, C. W., & Zhang, C. (2021). A low-profile antenna with circularly polarized reconfigurable and omnidirectional radiation patterns. International Journal of RF and Microwave Computer-Aided Engineering, 31(1), 1–11. https://doi.org/10.1002/mmce.22492

    Article  Google Scholar 

  96. Xiao, M., Cui, Y., Li, R. (2019). A reconfigurable circular-ring patch antenna with pattern and polarization diversities. 2019 International conference on microwave millimeter wave technology ICMMT 2019—Proceedings (pp. 2019–2021). https://doi.org/10.1109/ICMMT45702.2019.8992589

  97. Sun, H., Ge, X., He, W., & Zhao, L. (2020). A reconfigurable antenna with sum and difference patterns for WLAN access points. IEEE Antennas and Wireless Propagation Letters, 19(7), 1073–1077. https://doi.org/10.1109/LAWP.2020.2988690

    Article  Google Scholar 

  98. Yi, X., Huitema, L., & Wong, H. (2018). Polarization and pattern reconfigurable cuboid quadrifilar helical antenna. IEEE Transactions on Antennas and Propagation, 66(6), 2707–2715. https://doi.org/10.1109/TAP.2018.2816785

    Article  Google Scholar 

  99. Hu, J., Yang, X., Ge, L., Guo, Z., Hao, Z. C., & Wong, H. (2021). A reconfigurable 1 × 4 circularly polarized patch array antenna with frequency, radiation pattern, and polarization agility. IEEE Transactions on Antennas and Propagation, 69(8), 5124–5129. https://doi.org/10.1109/TAP.2020.3048526

    Article  Google Scholar 

  100. Cetiner, B. Frequency, radiation pattern and polarization reconfigurable antenna using a parasitic pixel layer.

  101. Ge, L., Li, Y., & Wang, J. (2017). A low-profile reconfigurable cavity-backed slot antenna with frequency, polarization, and radiation pattern agility. IEEE Transactions on Antennas and Propagation, 65(5), 2182–9. https://doi.org/10.1109/TAP.2017.2681432

    Article  Google Scholar 

  102. Zhang, Y., Sun, D., Dong, T., & Yin, J. (2020). Design of reconfigurable patch antenna in frequency. Pattern, and Switchable Polarization, 35(9), 1037–1046.

    Google Scholar 

  103. Bancroft, R. (2019). Microstrip and printed antenna design. https://doi.org/10.1049/pbte083e

  104. Shah, I. A., Hayat, S., Basir, A., et al. (2019). Design and analysis of a hexa-band frequency reconfigurable antenna for wireless communication. AEU - International Journal of Electronics and Communications, 98, 80–88. https://doi.org/10.1016/j.aeue.2018.10.012

    Article  Google Scholar 

  105. Edition T. Icrowave Ngineering.

  106. Costantine, J., Tawk, Y., Barbin, S. E., & Christodoulou, C. G. (2015). Reconfigurable antennas: Design and applications. Proceedings of the IEEE, 103(3), 424–437. https://doi.org/10.1109/JPROC.2015.2396000

    Article  Google Scholar 

  107. Rebeiz, G. M. (2003). RF MEMS theory and technology. Wiley.

    Book  Google Scholar 

  108. Tawk, Y., Costantine, J., Hemmady, S., Balakrishnan, G., Avery, K., & Christodoulou, C. G. (2012). Demonstration of a cognitive radio front end using an optically pumped reconfigurable antenna system (OPRAS). IEEE Transactions on Antennas and Propagation, 60(2 Part 2), 1075–1083. https://doi.org/10.1109/TAP.2011.2173139

    Article  Google Scholar 

  109. Reji, V. (2023). Frequency recon gurable antenna performance analysis with various light sources.

  110. Ali, A., Topalli, K., Ramzan, M., et al. (2019). Optically reconfigurable planar monopole antenna for cognitive radio application. Microwave and Optical Technology Letters, 61(4), 1110–1115. https://doi.org/10.1002/mop.31678

    Article  Google Scholar 

  111. Tawk, Y., Costantine, J., Barbin, S. E., & Christodoulou, C. G. (2011). Integrating laser diodes in a reconfigurable antenna system. In SBMO/IEEE MTT-S international microwave optoelectronics conference proceedings (pp. 794–796). https://doi.org/10.1109/IMOC.2011.6169295

  112. Lin, P., Wu, Y., Wu, Z., Zhuo, R., & Huangfu, J. (2022). Optically switched multiband antenna based on Vivaldi structure. Science and Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-022-19813-1

    Article  Google Scholar 

  113. Alsharif, F., Safi, S., AbouFoul, T., Abu Nasr, M., & Abu, N. S. (2016). Mechanical reconfigurable microstrip antenna. International Journal of Microwave and Optical Technology, 11(3), 153–160.

    Google Scholar 

  114. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2010). A frequency reconfigurable rotatable microstrip antenna design. In 2010 IEEE international symposium antennas propagation CNC-USNC/URSI radio science meeting—Lead wave, AP-S/URSI 2010 (pp. 2–5). https://doi.org/10.1109/APS.2010.5561272

  115. Dash, S., Psomas, C., Patnaik, A., & Krikidis, I. (2022). An ultra-wideband orthogonal-beam directional graphene-based antenna for THz wireless systems. Science and Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-26398-2

    Article  Google Scholar 

  116. Moradi, K., & Karimi, P. (2022). An enhanced gain of frequency and polarization reconfigurable graphene antenna in terahertz regime. AEU - International Journal of Electronics and Communications, 2023(158), 154463. https://doi.org/10.1016/j.aeue.2022.154463

    Article  Google Scholar 

  117. Devapriya, T., & Robinson, A. (2019). Design and analysis of microstrip patch antenna using periodic EBG structure for C-band applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06669-4

    Article  Google Scholar 

  118. Farahani, H. S., Veysi, M., Kamyab, M., & Tadjalli, A. (2010). Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas and Wireless Propagation Letters, 9, 57–59. https://doi.org/10.1109/LAWP.2010.2042565

    Article  Google Scholar 

  119. Mathur, R., & Dwari, S. (2021). Frequency and port reconfigurable MIMO antenna for UWB/5G/WLAN band IoT applications. International Journal of RF and Microwave Computer-Aided Engineering, 31(7), 1–11. https://doi.org/10.1002/mmce.22692

    Article  Google Scholar 

  120. Zhao, X., Riaz, S., & Geng, S. (2019). A reconfigurable MIMO/UWB MIMO antenna for cognitive radio applications. IEEE Access, 7, 46739–46747. https://doi.org/10.1109/ACCESS.2019.2909810

    Article  Google Scholar 

  121. Vaughan, R. G., & Andersen, J. B. (1987). Antenna diversity in mobile communications. IEEE Transactions on Vehicular Technology, 36(4), 149–72.

    Article  Google Scholar 

  122. Rosengren, K., & Kildal, P. (2022). Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber (pp. 7–16). https://doi.org/10.1049/ip-map

  123. Sharawi, M. S., Khan, M. U., Numan, A. B., & Aloi, D. N. (2014). A CSRR loaded MIMO antenna system for ISM band operation. IEEE Transactions on Antennas and Propagation, 61(8), 4265–74.

    Article  Google Scholar 

  124. Singh, T., Arif, K., & Heena, A. (2018). Design and analysis of reconfigurable microstrip antenna for cognitive radio applications. Wireless Personal Communications, 98(2), 2163–2185. https://doi.org/10.1007/s11277-017-4968-7

    Article  Google Scholar 

  125. Patra, T. K., Sabat, B., & Behera, K. R. (2020). Design of reconfigurable ultra-wide band monopole antenna for cognitive radio.

  126. El Fatimi, A., Bri, S., & Saadi, A. (2020). Reconfigurable ultra wideband to narrowband antenna for cognitive radio applications using PIN diode. Telkomnika Telecommunication Computed Electronics Control, 18(6):2807–2814. https://doi.org/10.12928/TELKOMNIKA.v18i6.16242

  127. Hussain, R., Raza, A., Khan, M. U., Shammim, A., & Sharawi, M. S. (2019). Miniaturized frequency reconfigurable pentagonal MIMO slot antenna for interweave CR applications. International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.21811

    Article  Google Scholar 

  128. Goswami, A., Bhattacharya, A., & Dasgupta, B. (2021). Reconfigurable hexagon shaped printed antenna for cognitive radio application. International Journal of RF and Microwave Computer-Aided Engineering, 31(2), 1–13. https://doi.org/10.1002/mmce.22514

    Article  Google Scholar 

  129. Kantemur, A., Tak, J., Siyari, P., Abdelrahman, A. H., Krunz, M., & Xin, H. (2020). A novel compact reconfigurable broadband antenna for cognitive radio applications. IEEE Transactions on Antennas and Propagation, 68(9), 6538–6547. https://doi.org/10.1109/TAP.2020.2996803

    Article  Google Scholar 

  130. Ikram, M., Al Abbas, E., Nguyen-trong, N., Sayidmarie, K. H., & Abbosh, A. (2019). Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G. IEEE Transactions on Antennas and Propagation. https://doi.org/10.1109/TAP.2019.2930119

    Article  Google Scholar 

  131. Li, P. K. (2017). Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for application (pp. 2526–2531). https://doi.org/10.1002/mop.30778

  132. Liu, D., Hong, W., Rappaport, T. S., Luxey, C., & Hong, W. (2017). What will 5G antennas and propagation be? IEEE Transactions on Antennas and Propagation, 65(12), 6205–12.

    Article  Google Scholar 

  133. Khairnar, V. V., Kadam, B. V., Ramesha, C. K., & Gudino, L. J. (2018). A reconfigurable parasitic antenna with continuous beam scanning capability in H-plane. AEUE - International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2018.02.014

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, T.B.T, writing—review and editing T.B.T, S.T., investigation T.B.T, S.T, resources T.B.T. For other cases, all authors have participated. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tejal Tandel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the author name Smir Trapasiya was corrected to Samir Trapasiya.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandel, T., Trapasiya, S. Reconfigurable Antenna for Wireless Communication: Recent Developments, Challenges and Future. Wireless Pers Commun 133, 725–768 (2023). https://doi.org/10.1007/s11277-023-10785-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10785-7

Keywords

Navigation