Skip to main content
Log in

Frequency Selective Surface Textile Antenna for Wearable Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The design of an efficient frequency selective surface (FSS) array structure for a wearable antenna as a reflector is introduced in this paper. An ultra-wideband antenna capable of increasing the gain over Industrial, Scientific, and Medical (ISM) bands at 2.4 GHz and 5.8 GHz and reducing the Specific Absorption Rate (SAR) in the human body to be used for Wearable Body Area Network (WBAN) application is presented. Due to heavy data transmission for applications like wireless LAN, WiMAX, Bluetooth, and Zigbee, traffic at 2.4 GHz is getting congested. This has opened a new frequency in the ISM band at 5.8 GHz. The proposed antenna structure includes a circular patch with semi-circular and diamond-shaped slots which is fabricated on textile material. Flannel fabric is chosen as a substrate. The slots introduced in the circular patch antenna aim in obtaining impedance bandwidth of 4.5 GHz from 1.5–6 GHz covering ISM bands with optimal results at 2.4 GHz and 5.8 GHz. FSS structure is used as a reflector to enhance and stabilize the gain throughout the wideband. Thus, the proposed antenna has a wideband and Omni-directional pattern making it useful for WBAN. The designed FSS structure reduces the SAR value to 0.56 W/kg and 0.511 W/kg at 2.4 GHz and 5.8 GHz respectively. The gain is 3.4 dBi at 2.4 GHz and 3.35 dBi at 5.8 GHz when the FSS reflector is placed at 1 mm below the antenna. The overall dimension of the antenna with reflector setup is 42 × 43 × 3 mm3 which is 0.7λ wavelengths making it feasible to be worn on the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

There is no data.

Code availability (software application or custom code)

There is no code.

References

  1. Mitra Akbari, Lauri Sydänheimo, Yahya Rahmat-Sami, Johanna Virkki, and Leena Ukkonen, (2016) “Implementation and Performance Evaluation of Graphene-based Passive UHF RFID Textile Tags. In: 2016 URSI International Symposium on Electromagnetic Theory (EMTS), IEEE

  2. Behera, S. K., & Karmakar, N. C. (2020). Wearable chipless radio-frequency identification tags for biomedical applications: A review [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 62(3), 94–104. https://doi.org/10.1109/MAP.2020.2983978

    Article  Google Scholar 

  3. K. Shikder and F. Arifin, (2015) Design and evaluation of a UWB wearable textile antenna for body area network. In: 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT), 326–330, https://doi.org/10.1109/EICT.2015.7391970.

  4. S Yan, LAY Poffelie, PJ Soh, Xuezhi Zheng GAE Vandenbosch, (2016) On-body performance of wearable UWB textile antenna with full ground plane. In: 2016 10th European Conference on Antennas and Propagation (EuCAP), 1–4, doi: https://doi.org/10.1109/EuCAP.2016.7481477.

  5. Ouyang, Y., & Chappell, W. J. (2008). High frequency properties of electro-textiles for wearable antenna applications. IEEE Transactions on Antennas and Propagation, 56(2), 381–389. https://doi.org/10.1109/TAP.2007.915435

    Article  Google Scholar 

  6. K Wang, J Li, (2018) Jeans Textile Antenna for Smart Wearable Antenna. In: 12th International Symposium on Antennas Propagation and EM Theory (ISAPE), 1–3, https://doi.org/10.1109/ISAPE.2018.8634337

  7. S Li J Li (2018) Smart patch wearable antenna on Jeans textile for body wireless communication. In: 2018 12th International Symposium on Antennas Propagation and EM Theory (ISAPE), 1–4, https://doi.org/10.1109/ISAPE.2018.8634084

  8. Kiourti, A., Volakis, J. L., Simorangkir, R. B. V. B., Abbas, S. M., & Esselle, K. P. (2016). UWB antennas on conductive textiles. IEEE International Symposium on Antennas and Propagation (APSURSI), 2016, 1941–1942. https://doi.org/10.1109/APS.2016.7696677

    Article  Google Scholar 

  9. Martinez, I., & Werner, D. H. (2018). Circular-polarized textile based antenna for wearable body area networks. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018, 1195–1196. https://doi.org/10.1109/APUSNCURSINRSM.2018.8609131

    Article  Google Scholar 

  10. Dey, S., Saha, J. K., & Karmakar, N. C. (2015). Smart sensing: Chipless RFID solutions for the internet of everything. IEEE Microwave Magazine, 16(10), 26–39.

    Article  Google Scholar 

  11. Islam, M. A., & Karmakar, N. C. (2012). A novel compact printable dual- polarized chipless RFID system. Microwave Theory and Techniques, IEEE Transactions on, 60(7), 2142–2151.

    Article  Google Scholar 

  12. Occhiuzzi, C. P., & Marrocco, G. (2011). Passive RFID strain-sensor based on meander-line antennas. IEEE Transactions on Antennas and Propagation, 59(12), 4836–4840.

    Article  Google Scholar 

  13. Ding, X. M., Zhang, K., Yu, H., & Zhu, L. (2014). A novel magnetic coupling UHF near field RFID reader antenna based on multilayer-printed-dipoles array. IEEE Transactions on Magnetics, 50(1), 1–4.

    Article  Google Scholar 

  14. Li, Y., Rongwei, Z., Staiculescu, D., Wong, C. P., & Tentzeris, M. M. (2009). A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas Wireless Propag. Lett., 8, 653–656.

    Article  Google Scholar 

  15. Karmakar, N. C. (2016). Tag, you’re It- radar cross section of chipless RFID tags. IEEE Microwave Magazine Year, 17(7), 64–74.

    Article  Google Scholar 

  16. Karmakar, N. C., Yang, Y., & Rahim, A. (2018). Microwave Sleep Apnoea Monitoring. Springer.

    Book  Google Scholar 

  17. Koski, K., Vena, A., Sydanheimo, L., Ukkonen, L., & Samii, Y. (2013). Design and implementation of electro- textile ground planes for wearable UHF RFID patch tag antennas. IEEE Antennas and Wireless Propagation Letters, 12, 964–967.

    Article  Google Scholar 

  18. Vallozzi, L., Hertleer, C., & Rogier, H. (2016). Latest developments in the field of textile antennas. Elsevier BV. https://doi.org/10.1016/B978-0-08-100574-3.00026-6

    Article  Google Scholar 

  19. Yang, D., Jianzhong, Hu., & Liu, S. (2018). A Low Profile UWB Antenna for WBAN Applications. IEEE Access, 6, 25214–25219. https://doi.org/10.1109/ACCESS.2018.2819163

    Article  Google Scholar 

  20. Lakshmanan, R., & Sukumaran, S. K. (2016). Flexible Ultra-Wide Band Antenna for WBAN Applications. Procedia Technology, 24, 880–887. https://doi.org/10.1016/j.protcy.2016.05.149

    Article  Google Scholar 

  21. Ray, K. P., & Ranga, Y. (2006). Ultra-wideband printed modified triangular monopole antenna. Electronic Letters, 42(19), 1081–1082.

    Article  Google Scholar 

  22. Swetha Amit, Viswanath Talasila, Prasad Shastry, (2019) A Semi-Circular Slot Textile Antenna for Ultra-Wideband Applications, In: 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, Georgia,

  23. Balanis, C. A. (2005). Antenna theory: Analysis and design. Wiley-Interscience.

    Google Scholar 

  24. Sasikala, T., Arunchandar, R., Bhagyaveni, M. A., & Shanmuga Priya, M. (2018). Design of dual-band antenna for 2.45 and 5.8 GHz ISM band. National Academy Science Letters, 42(3), 221–226.

    Article  Google Scholar 

  25. Lorenzo, J. (2016). Modulated frequency selective surfaces for wearable RFID and sensor applications. IEEE Transactions on Antennas and Propagation, 64(10), 4447–4456. https://doi.org/10.1109/TAP.2016.2596798

    Article  MathSciNet  MATH  Google Scholar 

  26. Ranga, Y., Matekovits, L., Weily, A. R., & Esselle, K. P. (2013). A constant gain ultra-wideband antenna with a multi-layer frequency selective surface. Progress in Electromagnetics Research Letters, 38, 119–125.

    Article  Google Scholar 

  27. Jha, K. R., Singh, G., & Jyoti, R. (2012). A simple synthesis technique of single-square-loop frequency selective surface. Progress in Electromagnetics Research B, 45, 165–185.

    Article  Google Scholar 

  28. Pasian, M., Monni, S., Neto, A., Ettorre, M., & Gerini, G. (2010). Frequency selective surfaces for extended bandwidth backing reflector functions. IEEE Transactions on Antennas and Propagation, 58(1), 43–50.

    Article  Google Scholar 

  29. International Electrotechnical Commission (IEC), ‘‘Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices - Human models, instrumentation and procedures, Part 2: Procedure to determine the specific absorption rate (SAR) for mobile wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz),’’ IEC Technical Committee 106, Geneva, Switzerland, IEC 62209 Part 2, 2007.

  30. Bamba, W., Joseph, G., Vermeeren, E., Tanghe, D. P., Gaillot, J. B., Andersen, J. O., Nielsen, M. L., & Martens, L. (2013). Validation of experimental whole-body SAR assessment method in a complex indoor environment. Bioelectromagnetics, 34, 122–132.

    Article  Google Scholar 

Download references

Funding

There are currently no Funding Sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swetha Amit.

Ethics declarations

Conflict of interest

There are no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amit, S., Talasila, V., Ramya, T.R. et al. Frequency Selective Surface Textile Antenna for Wearable Applications. Wireless Pers Commun 132, 965–978 (2023). https://doi.org/10.1007/s11277-023-10644-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10644-5

Keywords

Navigation