Skip to main content
Log in

Transmission Waveform Design of MIMO Dual-Functional Radar-Communication System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Based on the multiple-input multiple-output (MIMO) dual-functional radar-communication (DFRC) system, a new DFRC transmission waveform is designed in this paper, The MIMO-DFRC system transmits radar detection waveform to targets and communication signals to downlink users simultaneously using orthogonal frequency division multiplexing (OFDM) chirp multi-channel orthogonal signals. Firstly, considering the key performance indicators of communication and sensing, an optimization model is established to minimize the joint function of downlink multi-user interference (MUI), waveform similarity and CRB under the constraint of total transmit power, and the tradeoff parameter is introduced to adjust the priority of communication and radar performance, and the penalty parameter is introduced to adjust the weight of reference waveform similarity and CRB. The constrained optimization problem can be further reduced to a non-convex quadratic constrained quadratic programming problem, which can be solved by semidefinite relaxation (SDR) technique. The global optimal solution can be obtained by transforming the constrained optimization problem into a semi-definite programming problem (SDP) by rank one approximation. The numerical results show that the designed DFRC transmission waveform can achieve better detection performance without sacrificing the communication performance in the real scenario, and the performance indicators of the new DFRC transmission waveform are significantly better than that of the traditional DFRC transmission waveform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The authors confirm that the data supporting the findings of this study are available within the article.

Code Availability

The code used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu, F., Cui, Y. H., Masouros, C., et al. (2022). Integrated sensing and communications: Toward dual-functional wireless networks for 6G and Beyond. IEEE Journal on Selected Areas in Communications, 40(6), 1728–1767. https://doi.org/10.1109/JSAC.2022.3156632

    Article  Google Scholar 

  2. Xiao, Z., & Zeng, Y. (2022). Waveform design and performance analysis for full-duplex integrated sensing and communication. IEEE Journal on Selected Areas in Communications, 40(6), 1823–1837. https://doi.org/10.1109/JSAC.2022.3155509

    Article  Google Scholar 

  3. Kovarskiy, J. A., Kirk, B. H., Martone, A. F., et al. (2021). Evaluation of real-time predictive spectrum sharing for cognitive radar. IEEE Transactions on Aerospace and Electronic Systems, 57(1), 690–705. https://doi.org/10.1109/TAES.2020.3031766

    Article  Google Scholar 

  4. Griffiths, H., Cohen, L., Watts, S., et al. (2015). Radar spectrum engineering and management: Technical and regulatory issues. Proceedings of the IEEE, 103(1), 85–102. https://doi.org/10.1109/JPROC.2014.2365517

    Article  Google Scholar 

  5. Paul, B., Chiriyath, A. R., & Bliss, D. W. (2017). Survey of RF communications and sensing convergence research. IEEE Access, 5, 252–270. https://doi.org/10.1109/ACCESS.2016.2639038

    Article  Google Scholar 

  6. Geng, Z., Deng, H., & Himed, B. (2015). Adaptive radar beamforming for interference mitigation in radar-wireless spectrum sharing. IEEE Signal Process, 22(4), 484–488. https://doi.org/10.1109/LSP.2014.2363585

    Article  Google Scholar 

  7. Rao, R. M., Dhillon, H. S., Marojevic, V., et al. (2021). Underlay radar-massive MIMO spectrum sharing: Modeling fundamentals and performance analysis. IEEE Transactions on Wireless Communications, 20(11), 7213–7229. https://doi.org/10.1109/TWC.2021.3081458

    Article  Google Scholar 

  8. Liu, F., Masouros, C., Li, A., et al. (2017). Robust MIMO beamforming for cellular and radar coexistence. IEEE Wireless Communications Letters, 6(3), 374–377. https://doi.org/10.1109/LWC.2017.2693985

    Article  Google Scholar 

  9. Zhang, J. A., Liu, F., Masouros, C., et al. (2021). An overview of signal processing techniques for joint communication and radar sensing. IEEE Journal of Selected Topics in Signal Processing, 15(6), 1295–1315. https://doi.org/10.1109/JSTSP.2021.3113120

    Article  Google Scholar 

  10. Liu, A. (2022). A survey on fundamental limits of integrated sensing and communication. IEEE Communications Surveys & Tutorials, 24(2), 994–1034. https://doi.org/10.1109/COMST.2022.3149272

    Article  Google Scholar 

  11. Cheng, X., Duan, D., Gao, S., et al. (2022). Integrated sensing and communications (ISAC) for vehicular communication networks (VCN). IEEE Internet of Things Journal, 9(23), 23441–23451. https://doi.org/10.1109/JIOT.2022.3191386

    Article  Google Scholar 

  12. Blunt, S. D., Yatham, P., & Stiles, J. (2010). Intrapulse radar-embedded communications. IEEE Transactions on Aerospace and Electronic Systems, 46(3), 1185–1200. https://doi.org/10.1109/TAES.2010.5545182

    Article  Google Scholar 

  13. Ciuonzo, D., Maio, A. D., Foglia, G., et al. (2015). Intrapulse radar-embedded communications via multiobjective optimization. IEEE Transactions on Aerospace and Electronic Systems, 51(4), 2960–2974. https://doi.org/10.1109/TAES.2015.140821

    Article  Google Scholar 

  14. Khawar, A., Abdelhadi, A., & Clancy, C. (2015). Target detection performance of spectrum sharing MIMO radars. IEEE Sensors J., 15(9), 4928–4940. https://doi.org/10.1109/JSEN.2015.2424393

    Article  Google Scholar 

  15. Liu, F., Liu, Y. F., Li, A., et al. (2022). Cramér-rao bound optimization for joint radar-communication beamforming. IEEE Transactions on Signal Processing, 70, 240–253. https://doi.org/10.1109/TSP.2021.3135692

    Article  MathSciNet  Google Scholar 

  16. Zhao, Y., Chen, Y., Ritchie, M., et al. (2021). MIMO dual-functional radar-communication waveform design with peak average power ratio constraint. IEEE Access, 9, 8047–8053. https://doi.org/10.1109/ACESS.2020.3045083

    Article  Google Scholar 

  17. Khaleda, M., Paulomi, M., Gour, C. M., et al. (2019). Hybrid MMW-over fiber/OFDM-FSO transmission system based on doublet lens scheme and POLMUX technique. Optical Fiber Technology, 52, 101942. https://doi.org/10.1016/j.yofte.2019.101942

    Article  Google Scholar 

  18. Khaleda, M., Paulomi, M., Bubai, D., et al. (2021). Bidirectional OFDM-MMWOF transport system based on mixed QAM modulation format using dual mode colorless laser diode and RSOA for next generation 5-G based network. Optical Fiber Technology, 64, 102562. https://doi.org/10.1016/j.yofte.2021.102562

    Article  Google Scholar 

  19. Mandal, P., Mallick, K., Santra, S., et al. (2021). A bidirectional hybrid WDM-OFDM network for multiservice communication employing self-injection locked Qdash laser source based on elimination of Rayleigh backscattering noise technique. Optical and Quantum Electronics, 53(5), 263. https://doi.org/10.1007/s11082-021-02948-2

    Article  Google Scholar 

  20. Liu, F., Masouros, C., Li, A., et al. (2018). MU-MIMO communications with MIMO radar: From co-existence to joint transmission. IEEE Transactions on Wireless Communications, 17(4), 2755–2770. https://doi.org/10.1109/TWC.2018.2803045

    Article  Google Scholar 

  21. Mohammed, S. K., & Larsson, E. G. (2013). Per-antenna constant envelope precoding for large multi-user MIMO systems. IEEE Transactions on Communications, 61(3), 1059–1071. https://doi.org/10.1109/TCOMM.2013.012913.110827

    Article  Google Scholar 

  22. Liu, X., Huang, T., Shlezinger, N., et al. (2020). Joint transmit beamforming for multiuser MIMO communications and MIMO radar. IEEE Transactions on Signal Processing, 68, 3929–3944. https://doi.org/10.1109/TSP.2020.3004739

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J., & Stoica, P. (2007). MIMO radar with colocated antennas. IEEE Signal Process, 24(5), 106–114. https://doi.org/10.1109/MSP.2007.904812

    Article  Google Scholar 

  24. Stoica, P., Li, J., & Xie, Y. (2007). On probing signal design for MIMO radar. IEEE Transactions on Signal Processing., 55(8), 4151–4161. https://doi.org/10.1109/TSP.2007.894398

    Article  MathSciNet  MATH  Google Scholar 

  25. Fuhrmann, D. R., & Antonio, G. S. (2008). Transmit beamforming for MIMO radar systems using signal cross-correlation. IEEE Trans Aerospace Electron Systems, 44(1), 171–186. https://doi.org/10.1109/TAES.2008.4516997

    Article  Google Scholar 

  26. Lin, T., Zhou, X., Zhu, Y., et al. (2021). Hybrid beamforming optimization for DOA estimation based on the CRB analysis. IEEE Signal Processing Letters, 28, 1490–1494. https://doi.org/10.1109/LSP.2021.3092613

    Article  Google Scholar 

  27. Bekkerman, I., & Tabrikian, J. (2006). Target detection and localization using MIMO radars and sonars. IEEE Transactions on Signal Processing., 54(10), 3873–3883. https://doi.org/10.1109/TSP.2006.879267

    Article  MATH  Google Scholar 

  28. Cui, G., Li, H., & Rangaswamy, M. (2014). MIMO radar waveform design with constant modulus and similarity constraints. IEEE Transactions on Signal Processing., 62(2), 343–353. https://doi.org/10.1109/TSP.2013.2288086

    Article  MathSciNet  MATH  Google Scholar 

  29. Maio, A. D., Nicola, S. D., & Huang, Y. (2008). Code design to optimize radar detection performance under accuracy and similarity constraints. IEEE Transactions on Signal Processing., 56(11), 5618–5629. https://doi.org/10.1109/TSP.2008.929657

    Article  MathSciNet  MATH  Google Scholar 

  30. Tsinos, C. G., Arora, A., Chatzinotas, S., et al. (2021). Joint transmit waveform and receive filter design for dual-function radar-communication systems. IEEE Journal of Selected Topics in Signal Processing, 15(6), 1378–1392. https://doi.org/10.1109/JSTSP.2021.3112295

    Article  Google Scholar 

  31. Liu, F., Zhou, L., Masouros, C., Li, A., et al. (2018). Toward dual-functional radar-communication systems: Optimal waveform design. IEEE Transactions on Signal Processing, 66(16), 4264–4279. https://doi.org/10.1109/TSP.2018.2847648

    Article  MathSciNet  MATH  Google Scholar 

  32. Garces A. (2022). Convex optimization. In Mathematical Programming for Power Systems Operation: From Theory to Applications in Python, IEEE

  33. Jain, P., & Kar, P. (2017). Non-convex optimization for machine learning. Foundations and Trends® in Machine Learning, 10(3–4), 142–363.

    Article  MATH  Google Scholar 

Download references

Funding

This work is supported by the Fundamental Research Funds for the Central Universities (FRF-DF-20–12, FRF-GF-18-017B).

Author information

Authors and Affiliations

Authors

Contributions

ZL: performed the data analyses and wrote the manuscript; ZM: contributed to the conception of the study, and contributed significantly to analysis and manuscript preparation; YL: performed the experiment.

Corresponding author

Correspondence to Zhong-gui Ma.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The constrained optimization problem of Eq. (17) is:

$$\begin{gathered} \mathop {\min }\limits_{{\mathbf{X}}} {\uprho }||{\mathbf{HX}} - {\mathbf{S}}||_{{\text{F}}}^{2} + (1 - {\uprho })\{ ||{\mathbf{X}} - {\mathbf{X}}_{0} ||_{{\text{F}}}^{2} - {\upmu }||{\dot{\mathbf{a}}}_{{\text{r}}} {\mathbf{a}}_{{\text{t}}}^{\text{H}} {\mathbf{X}}||{}_{{\text{F}}}^{2} \} \hfill \\ {\text{s.t.}}\frac{1}{{\text{L}}}||{\mathbf{X}}||_{{\text{F}}}^{{2}} = {\text{P}}_{{\text{t}}} \hfill \\ \end{gathered}$$
(21)

First, split the objective function in Eq. (21):

$${\uprho }||{\mathbf{HX}} - {\mathbf{S}}||_{{\text{F}}}^{2} + (1 - {\uprho })||{\mathbf{X}} - {\mathbf{X}}_{0} ||_{{\text{F}}}^{2} - {\upmu }(1 - {\uprho })||{\dot{\mathbf{a}}}_{{\text{r}}} {\mathbf{a}}_{{\text{t}}}^{\text{H}} {\mathbf{X}}||{}_{{\text{F}}}^{2}$$
(22)

It is not difficult to find that the objective function in Eq. (22) is composed of three F norms. First, we can integrate the first two terms of the objective function:

$$||\left[\sqrt {\uprho } {\mathbf{H}}^{\text{T}} ,\sqrt {1 - {\uprho }} {\mathbf{I}}_{{N_{t} }} \right]^{\text{T}} {\mathbf{X}} - \left[\sqrt {\uprho } {\mathbf{S}}^{\text{T}} ,\sqrt {1 - {\uprho }} {\mathbf{X}}_{{\mathbf{0}}}^{\text{T}} \right]^{\text{T}} ||_{{\text{F}}}^{2} - {\upmu }(1 - {\uprho })||{\dot{\mathbf{a}}}_{{\text{r}}} {\mathbf{a}}_{{\text{t}}}^{\text{H}} {\mathbf{X}}||{}_{{\text{F}}}^{2}$$
(23)

Then integrate the objective function of Eq. (23):

$$||\left[ {\left[\sqrt {\uprho } {\mathbf{H}}^{\text{T}} ,\sqrt {1 - {\uprho }} {\mathbf{I}}_{{N_{t} }} \right],{\text{j}} \sqrt {(1 - {\uprho })\mu } ({\dot{\mathbf{a}}}_{r} {\mathbf{a}}_{t}^{\text{H}} )^{\text{T}} } \right]^{\text{T}} {\mathbf{X}} - \left[ {\left[\sqrt {\uprho } {\mathbf{S}}^{\text{T}} ,\sqrt {1 - {\uprho }} {\mathbf{X}}_{{\mathbf{0}}}^{\text{T}} \right],{\mathbf{Q}}} \right]^{\text{T}} ||_{{\text{F}}}^{2}$$
(24)

In Eq. (24), the matrix \({\mathbf{Q}} \in {{\mathbb{C}}}^{{L \times N_{r} }}\) is defined as an all zero matrix, \({\mathbf{B}} = \left[ {[\sqrt \rho {\mathbf{H}}^{\text{T}} ,\sqrt {1 - \rho } {\mathbf{I}}_{{N_{t} }} ],{\text{j}} \sqrt {(1 - \rho )\mu } ({\dot{\mathbf{a}}}_{r} {\mathbf{a}}_{t}^{\text{H}} )^{\text{T}} } \right]^{\text{T}} \in {{\mathbb{C}}}^{{(K + N_{t} + N_{r} ) \times N_{t} }}\),\({\mathbf{C}} = \left[ {[\sqrt \rho {\mathbf{S}}^{\text{T}} ,\sqrt {1 - \rho } {\mathbf{X}}_{{\mathbf{0}}}^{\text{T}} ],{\mathbf{Q}}} \right]^{\text{T}} \in {{\mathbb{C}}}^{{(K + N_{t} + N_{r} ) \times L}}.\)

Equation (21) can be further expressed as:

$$\begin{gathered} \mathop {\min }\limits_{{\mathbf{X}}} ||{\mathbf{BX}} - {\mathbf{C}}||_{{\text{F}}}^{2} \hfill \\ {\text{s.t.}}\frac{1}{{\text{L}}}||{\mathbf{X}}||_{{\text{F}}}^{2} = {\text{P}}_{{\text{t}}} \hfill \\ \end{gathered}$$
(25)

Appendix 2

Since the objective function and constraints of Eq. (18) are quadratic, it is a non-convex quadratic constrained quadratic programming (QCQP) problem, which can be further transformed into an SDR problem. First, the matrix is listed:

$$\begin{gathered} ||{\mathbf{BX}} - {\mathbf{C}}||_{F}^{2} = \hfill \\ ||vec({\mathbf{BX}} - {\mathbf{C}})||_{2}^{2} = \hfill \\ ||vec({\mathbf{BX}}) - vec({\mathbf{C}})||_{2}^{2} = \hfill \\ ||({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})vec({\mathbf{X}}) - vec({\mathbf{C}})||_{2}^{2} \hfill \\ \end{gathered}$$
(26)

Then, substitute the matrix in Eq. (26) with variables. Where, \({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}} \in {{\mathbb{C}}}^{{(K + N_{t} + N_{r} )L \times N_{t} L}}\), \({\text{vec}} ({\mathbf{X}}) \in {{\mathbb{C}}}^{{N_{t} L \times 1}}\),Eq. (26) is rewritten as:

$$\begin{gathered} \mathop {\min }\limits_{{\mathbf{X}}} ||{\text{t}}{\text{vec}} ({\mathbf{C}}) - ({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}}){\text{vec}} ({\mathbf{X}})||_{2}^{2} \hfill \\ {\text{s.t.}}\left\{ \begin{gathered} \frac{1}{{\text{L}}}||{\text{vec}} ({\mathbf{X}})||_{2}^{2} = {\text{P}}_{{\text{t}}} \hfill \\ {\text{t}}^{2} = 1 \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered}$$
(27)

where \(t\) is an auxiliary variable. The purpose of adding \({\text{t}}^{2} = 1\) constraint is to homogenize the original constrained optimization problem. Split the objective function in Eq. (27) as:

$$\begin{gathered} ||{\text{t}}{\text{vec}} ({\mathbf{C}}) - ({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}}){\text{vec}} ({\mathbf{X}})||_{2}^{2} = \hfill \\ \left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]^{H} \left[ \begin{gathered} \begin{array}{*{20}c} {({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})^{\text{H}} ({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})} & {{\mathbf{ - }}({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})^{\text{H}} {\text{vec}} ({\mathbf{C}})} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {{\mathbf{ - }}{\text{vec}} ({\mathbf{C}})^{\text{H}} ({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})} & {{\text{vec}} ({\mathbf{C}})^{\text{H}} } \\ \end{array} {\text{vec}} ({\mathbf{C}}) \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right] \hfill \\ \end{gathered}$$
(28)

Because the product of a matrix's conjugate transpose and the matrix itself is a semi positive definite matrix, and \(\left[ \begin{gathered} \begin{array}{*{20}c} {({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})^{\text{H}} ({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})} & {{\mathbf{ - }}({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})^{\text{H}} {\text{vec}} ({\mathbf{C}})} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {{\mathbf{ - }}{\text{vec}} ({\mathbf{C}})^{\text{H}} ({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})} & {{\text{vec}} ({\mathbf{C}})^{\text{H}} } \\ \end{array} {\text{vec}} ({\mathbf{C}}) \hfill \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}}} \\ { - {\text{vec}} ({\mathbf{C}})} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}}} \\ { - {\text{vec}} ({\mathbf{C}})} \\ \end{array} } \right]^{\text{H}}\) Therefore, the matrix is a positive semi definite matrix. At the same time, the constraints in Eq. (27) can be expressed as:

$$\begin{gathered} ||vec({\mathbf{X}})||_{2}^{2} = \left[ \begin{gathered} vec({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]^{\text{H}} \left[ \begin{gathered} \begin{array}{*{20}c} {{\mathbf{\rm I}}_{{{\text{N}}_{{\text{t}}} {\text{L}}}} } & 0 \\ \end{array} \hfill \\ \begin{array}{*{20}c} 0 & { \, 0} \\ \end{array} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} vec({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right] = {\text{LP}}_{{\text{t}}} \hfill \\ {\text{t}}^{2} = \left[ \begin{gathered} vec({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]^{\text{H}} \left[ \begin{gathered} \begin{array}{*{20}c} {{\mathbf{0}}_{{{\text{N}}_{{\text{t}}} {\text{L}}}} } & 0 \\ \end{array} \hfill \\ \begin{array}{*{20}c} 0 & { \, 1} \\ \end{array} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} vec({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right] = 1 \hfill \\ \end{gathered}$$
(29)

The constrained optimization problem of Eq. (26) can be finally expressed as:

$$\begin{gathered} \mathop {\min }\limits_{{\mathbf{X}}} {\text{tr}} \left( {\left[ \begin{gathered} \begin{array}{*{20}c} {({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})^{\text{H}} ({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})} & {{\mathbf{ - }}({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})^{\text{H}} {\text{vec}} ({\mathbf{C}})} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {{\mathbf{ - }}{\text{vec}} ({\mathbf{C}})^{\text{H}} ({\mathbf{I}}_{{\mathbf{L}}} \otimes {\mathbf{B}})} & {{\text{vec}} ({\mathbf{C}})^{\text{H}} } \\ \end{array} {\text{vec}} ({\mathbf{C}}) \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]^{\text{H}} } \right) \hfill \\ s.t.\left\{ \begin{gathered} {\text{tr}} \left( {\left[ \begin{gathered} \begin{array}{*{20}c} {{\mathbf{\rm I}}_{{{\text{N}}_{{\text{t}}} {\text{L}}}} } & 0 \\ \end{array} \hfill \\ \begin{array}{*{20}c} 0 & { 0} \\ \end{array} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]^{\text{H}} } \right) = {\text{LP}}_{{\text{t}}} \hfill \\ {\text{tr}} \left( {\left[ \begin{gathered} \begin{array}{*{20}c} {{\mathbf{0}}_{{{\text{N}}_{{\text{t}}} {\text{L}}}} } & 0 \\ \end{array} \hfill \\ \begin{array}{*{20}c} 0 & { \, 1} \\ \end{array} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]^{\text{H}} } \right) = 1 \hfill \\ {\text{rank}} \left( {\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]^{\text{H}} } \right) = 1,\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]\left[ \begin{gathered} {\text{vec}} ({\mathbf{X}}) \hfill \\ {\text{ t}} \hfill \\ \end{gathered} \right]^{\text{H}} \ge 0 \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered}$$
(30)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ma, Zg. & Liang, Yp. Transmission Waveform Design of MIMO Dual-Functional Radar-Communication System. Wireless Pers Commun 132, 113–130 (2023). https://doi.org/10.1007/s11277-023-10594-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10594-y

Keywords

Navigation