Skip to main content
Log in

Performance Improvement of CDMA Wireless Sensor Networks in Low SNR Channels Based on Raptor Codes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Low signal to noise ratio (SNR) channels require careful design of communication systems in order to operate reliably in such extreme channels. Special measures and techniques must be considered when designing communication systems for such environments to counteract the effect of high noise power. Channel coding is a powerful tool to aid against adverse channel conditions including low SNR. Coupling channel coding with a spreading technique can further strengthen the performance of communication systems. Hence, we studied the performance of a system that combines Raptor codes with direct sequence code division multiple access (DS-CDMA) in low SNR scenarios. The studied design can operate in a wide range of low SNR values. Simulation results show that the system can offer satisfactory BER performance at different code rates. Also, combining Raptor codes with DS-CDMA showed an improvement of approximately 6 dB when compared with other schemes using DS-CDMA in low SNR conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The corresponding author may provide the data and material used in the manuscript subjected to reasonable request.

Code Availability

The code of the algorithm has been run in MATLAB software.

References

  1. Chen, Z. G., Lin, Y., Gong, Y. J., Zhan, Z. H., & Zhang, J. (2021). Maximizing lifetime of range-adjustable wireless sensor networks: A neighborhood-based estimation of distribution algorithm. IEEE Transactions on Cybernetics, 51(11), 5433–5444. https://doi.org/10.1109/TCYB.2020.2977858

    Article  Google Scholar 

  2. Yu, J., Wan, S., Cheng, X., & Yu, D. (2017). Coverage contribution area based $k$-coverage for wireless sensor networks. IEEE Transactions on Vehicular Technology, 66(9), 8510–8523. https://doi.org/10.1109/TVT.2017.2681692

    Article  Google Scholar 

  3. Zaghar, D. R., Abdullah, H. N., & Farhan, I. M. (2020). A Review for the adopted techniques in low SNR communication systems. Iraqi Journal of Computers, Communications, Control and Systems Engineering, 20(1), 40–52. https://doi.org/10.33103/uot.ijccce.20.1.5

    Article  Google Scholar 

  4. Rao, K. D. (2015). Channel coding techniques for wireless communications. Springer.

    MATH  Google Scholar 

  5. Babiker, M., Khalifa, O. O., Hashim, A. H. A., Salami, M. J. E., & Ahmed, M. Z. (2017). Performance of Turbo Code in CDMA under AWGN Channel. International Journal of Future Generation Communication and Networking, 10(5), 19–28. https://doi.org/10.14257/ijfgcn.2017.10.5.02

    Article  Google Scholar 

  6. Marcu, I., & Halunga, S. V. (2016). Implication of LDPC technique in non-ideal multiuser communication system. Wireless Personal Communications, 87, 797–814. https://doi.org/10.1007/s11277-015-2627-4

    Article  Google Scholar 

  7. Duel-hallen, A. (1995). Multiuser detecfion for CDMA systems. IEEE Personal Communications, 2(2), 46–58.

    Article  Google Scholar 

  8. Kundaeli, H. N. (2004). Performance analysis of CDMA-based wireless communication systems using the simplified improved Gaussian approximation method. Tanzania Journal of Science, 30(2), 41–52.

    Google Scholar 

  9. Ulloa, J. A., Taylor, D. P., & Poehlman, W. F. S. (1995). An expert system approach for cellular CDMA. IEEE Transactions on Vehicular Technology, 44(1), 146–154.

    Article  Google Scholar 

  10. Ormondroyd, R. F., & Maxey, J. J. (1997). Performance of low-rate orthogonal convolutional codes in DS-CDMA applications. IEEE Transactions on Vehicular Technology, 46(2), 320–328.

    Article  Google Scholar 

  11. Jiang, X., Liu, X., & Kirubarajan, T. (2022). Multiple access interference suppression for CDMA systems via ℓ∞-minimization. Fundamental Research, 2(5), 799–806. https://doi.org/10.1016/j.fmre.2021.11.037

    Article  Google Scholar 

  12. K. Rasadurai and N. Kumaratharan, “Performance Enhancement of MC-CDMA system through Turbo Multi-user Detection K.,” 2012 International Conference on Computer Communication and Informatics (ICCCI -2012), 2012.

  13. Shirvanimoghaddam, M., & Johnson, S. (2016). Raptor codes in the low SNR regime. IEEE Transactions on Communications, 64(11), 4449–4460. https://doi.org/10.1109/TCOMM.2016.2606410

    Article  Google Scholar 

  14. D. J. Shah, V. K. Patel, and H. A. Patel, “Performance analysis of turbo code for CDMA 2000 with convolutional coded IS-95 system in wireless communication system,” In ICECT 2010 - Proceedings of the 2010 2nd International Conference on Electronic Computer Technology, 2010, pp. 42–45, https://doi.org/10.1109/ICECTECH.2010.5479994.

  15. Patil, A., Biradar, G. S., & Vishvaksnan, K. S. (2020). Error-rate performance of coded system for MC-IDMA using spatial diversity in cognitive spectrum. Procedia Computer Science, 171, 1269–1278. https://doi.org/10.1016/j.procs.2020.04.135

    Article  Google Scholar 

  16. Chatzigeorgiou, I. A., Rodrigues, M. R. D., Wassell, I. J., & Carrasco, R. A. (2007). Comparison of convolutional and turbo coding for broadband FWA systems. IEEE Transactions on Broadcasting, 53(2), 494–503. https://doi.org/10.1109/TBC.2007.893387

    Article  Google Scholar 

  17. MacKay, D. J. C. (2005). Fountain codes. IEE Proceedings: Communications, 152(6), 1062–1068. https://doi.org/10.1049/ip-com:20050237

    Article  Google Scholar 

  18. El-bendary, M. A. M., El-samie, F. E. A., & Fouad, M. M. (2017). Utilization of raptor codes for OFDM-system performance enhancing. Wireless Personal Communications, 96(4), 5555–5585.

    Article  Google Scholar 

  19. Yu, W., Narayanan, K., Cheng, J., & Wu, J. (2019). Raptor codes with descending order degrees for AWGN channels. IEEE Communications Letters, 24(1), 29–33. https://doi.org/10.1109/LCOMM.2019.2948906

    Article  Google Scholar 

  20. M. Luby, “LT codes,” Annual Symposium on Foundations of Computer Science - Proceedings, pp. 271–280, 2002, https://doi.org/10.1109/SFCS.2002.1181950.

  21. Liu, X., Du, X., Zhang, J., Han, D., & Jin, L. (2022). ROFC-LF: recursive online fountain code with limited feedback for underwater acoustic networks. IEEE Transactions on Communications, 70(7), 4327–4342. https://doi.org/10.1109/TCOMM.2022.3178764

    Article  Google Scholar 

  22. Yue, J., Lin, Z., Vucetic, B., Mao, G., & Aulin, T. (2013). Performance analysis of distributed raptor codes in wireless sensor networks. IEEE Transactions on Communications, 61(10), 4357–4368.

    Article  Google Scholar 

  23. Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551–2567. https://doi.org/10.1109/TIT.2006.874390

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, J., Fei, Z., Cao, C., & Xiao, M. (2020). Design and analysis of online fountain codes for intermediate performance. IEEE Transactions on Communications, 68(9), 5313–5325. https://doi.org/10.1109/TCOMM.2020.2997400

    Article  Google Scholar 

  25. B. Tahir, S. Schwarz, and M. Rupp, “BER comparison between convolutional, Turbo, LDPC, and polar codes,” Proceedings of the 24th International Conference on Telecommunications: Intelligence in Every Form, ICT 2017, 2017, https://doi.org/10.1109/ICT.2017.7998249.

  26. Cao, Y., Blostein, S. D., & Chan, W. Y. (2015). Optimization of unequal error protection rateless codes for multimedia multicasting. Journal of Communications and Networks, 17(3), 221–230. https://doi.org/10.1109/JCN.2015.000043

    Article  Google Scholar 

  27. He, L., Lai, K., Lei, J., & Huang, Y. (2020). A fast encoding of 3GPP MBMS raptor codes based on operation instruction. IEEE Communications Letters, 24(1), 3–6. https://doi.org/10.1109/LCOMM.2019.2946355

    Article  Google Scholar 

  28. Farhan, I. M., Zagha, D. R., & Abdullah, H. N. (2022). Enhancement of code division multiple access system performance using raptor codes. Indonesian Journal of Electrical Engineering and Computer Science, 26(3), 1460–1468. https://doi.org/10.11591/ijeecs.v26.i3.pp1460-1468

    Article  Google Scholar 

  29. Frenger, P., Orten, P., & Ottosson, T. (2000). Code-spread CDMA using maximum free distance low-rate convolutional codes. IEEE Transactions on Communications, 48(1), 135–144. https://doi.org/10.1109/26.818881

    Article  Google Scholar 

  30. Hagh, M. J., & Soleymani, M. R. (2011). Raptor coding for non-orthogonal multiple access channels. IEEE International Conference on Communications. https://doi.org/10.1109/icc.2011.5962486

    Article  Google Scholar 

  31. Rajagopal A., Karibasappa K., and V. P. KS, “Design of SPA Decoder for CDMA applications,” In 2017 International Conference on Intelligent Computing and Control (I2C2), 2017.

  32. T. Shojaeezand, P. Azmi, and A. M. Yadegari, “Performance analysis of a LDPC coded CDMA system with physical layer security enhancement,” 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM, pp. 10–13, 2010, https://doi.org/10.1109/WICOM.2010.5601271.

  33. R. Tahir, S. Ejaz, S. Jangsher, and S. Ali, “Performance Analysis of Multi-User Polar Coded CDMA system,” 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), no. 1995, pp. 1000–1005, 2019.

  34. Xiao, Y., & Lee, M. H. (2006). Low complexity MIMO-LDPC CDMA systems over multipath channels. IEICE transactions on communications, 89(5), 1713–1717. https://doi.org/10.1093/ietcom/e89-b.5.1713

    Article  Google Scholar 

  35. Khoueiry, B. W., & Soleymani, M. R. (2014). “Joint channel estimation and raptor decoding over fading channel”, 2014 27th Biennial symposium on communications. QBSC, 2014, 168–172. https://doi.org/10.1109/QBSC.2014.6841207

    Article  Google Scholar 

  36. Benzid, D., & Kadoch, M. (2018). Raptor code to mitigate pilot contamination in Massive MiMo. Procedia Computer Science, 130, 310–317. https://doi.org/10.1016/j.procs.2018.04.044

    Article  Google Scholar 

  37. Lazaro, F., Paolini, E., Liva, G., & Bauch, G. (2016). Distance spectrum of fixed-rate raptor codes with linear random precoders. IEEE Journal on Selected Areas in Communications, 34(2), 422–436. https://doi.org/10.1109/JSAC.2015.2504281

    Article  Google Scholar 

  38. Kharel, A., & Cao, L. (2016). Improved decoding for raptor codes with short block-lengths over BIAWGN channel. In 2016 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1–5). IEEE. https://doi.org/10.1109/CITS.2016.7546447

  39. Kharel, A., & Cao, L. (2018). Analysis and design of physical layer raptor codes. IEEE Communications Letters, 22(3), 450–453. https://doi.org/10.1109/LCOMM.2017.2783946

    Article  Google Scholar 

  40. Etesami, O., & Shokrollahi, A. (2006). Raptor codes on binary memoryless symmetric channels. IEEE Transactions on Information Theory, 52(5), 2033–2051. https://doi.org/10.1109/TIT.2006.872855

    Article  MathSciNet  MATH  Google Scholar 

  41. S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the shannon limit,” 2001. [Online]. Available: http://truth.mit.edu/~sychung.

  42. Fadhel, H. (2019). Raptor codes for BIAWGN channel : SNR mismatch and the optimality of the inner and outer rates. University of Mississippi.

    Google Scholar 

  43. Sugiura, S. (2012). Decentralized-precoding aided rateless codes for wireless sensor networks. IEEE Communications Letters, 16(4), 506–509. https://doi.org/10.1109/LCOMM.2012.021612.112589

    Article  Google Scholar 

  44. Berrou, C., & Glavieux, A. (1996). Near optimum error correcting coding and decoding: turbo-codes. IEEE Transactions on communications, 44(10), 1261–1271.

    Article  Google Scholar 

  45. Y. L. Lee, J. Loo, and T. C. Chuah, “Modeling and performance evaluation of resource allocation for LTE femtocell networks,” Elsevier Inc., 2015, pp. 683–716.

  46. Ouyang, W., & Cham, W. K. (2010). Fast algorithm for walsh hadamard transform on sliding windows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 165–171. https://doi.org/10.1109/TPAMI.2009.104

    Article  Google Scholar 

  47. Thompson, A. (2017). The cascading haar wavelet algorithm for computing the walsh-hadamard transform. IEEE Signal Processing Letters, 24(7), 1020–1023. https://doi.org/10.1109/LSP.2017.2705247

    Article  Google Scholar 

  48. Shao, S., et al. (2019). Survey of turbo, LDPC, and polar decoder ASIC implementations. IEEE Communications Surveys and Tutorials, 21(3), 2309–2333. https://doi.org/10.1109/COMST.2019.2893851

    Article  Google Scholar 

  49. El-Bendary, M. A., & Abou El-Azm, A. E. (2019). Complexity considerations: efficient image transmission over mobile communications channels. Multimedia Tools and Applications, 78, 16633–16664. https://doi.org/10.1007/s11042-018-6843-2

    Article  Google Scholar 

Download references

Funding

No financial support was received to perform the research work of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhlas M. Farhan.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, I.M., Zaghar, D.R. & Abdullah, H.N. Performance Improvement of CDMA Wireless Sensor Networks in Low SNR Channels Based on Raptor Codes. Wireless Pers Commun 130, 2451–2470 (2023). https://doi.org/10.1007/s11277-023-10387-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10387-3

Keywords

Navigation